
INDEXING OF MPEG-7 STREAMS1

 Andrea Kofler-Vogt Harald Kosch Jörg Heuer
 University Klagenfurt University Klagenfurt Siemens AG; Munich
 Austria Austria Germany
 andrea@itec.uni-klu.ac.at harald@itec.uni-klu.ac.at Joerg.Heuer@siemens.com

1 This project was funded in part by FWF (Fonds zur Förderung der wissenschaftlichen Forschung) P14789 and by KWF (Kärntner
Wirtschaftsförderungsfonds).

ABSTRACT

The ISO/IEC Motion Picture Group (MPEG) issued in
2002 a standard, called MPEG-7, which enables the
content description of multimedia data in XML. The
standard supports applications to exchange, identify and
filter multimedia contents based on MPEG-7 descriptions.
However, processing MPEG-7 documents on mobile
terminals is problematic, since the verbose XML is not
adequate to limited bandwidth, low computational power
and limited battery life. In this document we describe an
index system that allows filtering and random access to
encoded MPEG-7 streams and which overcomes the
limitation of the network and the consuming terminal.
Encoding is applied in order to reduce the data rate of the
XML documents to be transmitted. The indexed parts of
the encoded streams can be accessed without the need to
deserialize the complete stream. Furthermore, the system
is evaluated and results of the experimental evaluation are
discussed.

1. INTRODUCTION

MPEG-7 ([1], [2], [3]) is a multimedia description
standard which has been standardized by the ISO/IEC
Motion Picture Expert Group (MPEG) to enable content
providers and consumers to identify and search
multimedia by content. Since its introduction in 2002, an
increasing number of applications uses MPEG-7 to
exchange their multimedia data. Application scenarios are
described in [4], [2], and [5].
Since especially in wireless communication bandwidth is
extremely expensive respectively limited, a compression
mechanism for XML based MPEG-7 data is required. Due
to this, the deserialization of compressed XML data must
be efficient with respect to computational complexity. The
compression mechanism has not only to be efficient in
terms of the reduction of the size and processing but
should also work in a streaming environment and should
allow the encoding and filtering of independent parts of
the XML document.

In this context, the system part of MPEG-7 introduced a
efficient representation of XML called Binary Format of
MPEG-7 (BiM) [6] to enable efficient transmission of the
XML based MPEG-7 data. In this representation, the meta
data is sent in a number of access units (AUs), each
containing several fragment update units (FUUs).
Accordingly by fragmentability a prerequisite of random
access is fulfilled. To support random access on dedicated
information within the stream index information for BiM-
encoded meta data is required. In this paper we present a
format for index information which can be transmitted
alongside with the XML data and allows fast random
access to particular fragment update units within an
encoded stream. Additionally we describe the processing
of the index and present measurements for the evaluation
of the system.

2. RELATED WORK

XML Compression Tools. A couple of compression
tools were developed that take advantage of the structure
of an XML document. Examples for such tools are XMill
[7], Millau [8], XGrind [9], and XPRESS [10]. In the case
of MPEG-7, a compression tool was required which
achieves a high compression rate, which can be used in a
streaming environment, and which allows the compression
of independent sub-trees. In order to provide these
functionalities, MPEG-7 standardized its own binary
format called BiM [6].
However, random access mechanisms are not provided by
the first version of BiM. Instead, the complete stream has
to be parsed before a query can be processed. For fast
random access to desired FUUs, an index system is
required.

XML Indexing Strategies. A number of indexing
solutions for XML have been proposed; among them are
the Index Fabric [11], SphinX [12], a multi-dimensional
indexing strategy [13], XISS [14], APEX [15], and ToXin
([16], [17]).
Most proposed systems are optimized according to
extended query functionality and provide for this a

complex set of index structures. Mapping these kinds of
indexes into one stream is difficult, first due to the
complex reference mechanisms when index trees are
aligned. Second, these index structures are often not
optimized for the requirement of a small storage size,
which is crucial in the streaming context described in this
paper. Thus, we will introduce an index system that is
based on a B-Tree.

3. REQUIREMENTS

The index system we are looking for has to fulfill the
following requirements:

• The data in the application scenarios we are

considered is continuously streamed and re-
streamed. Thus, our index system has to work in a
streaming environment.

• The index system is applied in environments with
limited resource availability (e.g., bandwidth). Due
to this, the size of the index data to be sent is a
crucial factor.

• The end devices used in many applications often
suffer from limited processing power. Anyway, the
index look-up in a streaming environment has to be
performed in a small and well-defined time period.

4. THE IMPLEMENTATION OF THE INDEX
SYSTEM

4.1. THE UNDERLYING DATA STRUCTURE

Different data structures were examined at the beginning..
According to the requirements listed above, we
considered only data structures that provide logarithmic
search behaviour, among them the sorted array, the binary
tree, and the B-Tree (Fehler! Verweisquelle konnte
nicht gefunden werden., [18]). After some evaluations
and estimations we decided to choose the B-Tree as basic
data structure due to following reasons:

• The B-Tree is a field-proofed data structure for fast
index-access in databases and file repositories.

• It supports the block-oriented partition of the
memory in mobile devices, i.e., it is quite expensive
to load a new block in mobile devices and the block
size is quite small. The B-tree has been proven to be
the most efficient data-structure in such memory
layout, minimizing the number of accessed data
blocks.

• Efficient search behavior. Since a B-tree is balanced,
the logarithmic search behavior can be guaranteed.

• The B-tree may be applied to any kind of data.
• Updates caused by insertions or deletions affect only

a limited number of nodes

Once this decision was done, we had to think about a
mechanism that allows the usage of the B-Tree in the
streaming environment. First of all, we had to find a way
to index XML based MPEG-7 data with a B-Tree. We
decided to insert root-to-leaf paths of the document tree in
the index tree. Afterwards, we developed an efficient
coding schema of the B-tree (streamlined B-tree) to
optimize the space consumption according to the network
bandwidth restrictions.

4.2. THE USAGE OF A B-TREE TO INDEX XML-
DATA

In order to index MPEG-7 data with a B-Tree, first the
relevant paths of a document to be indexed are generated.
These paths, without the context and the values of
attributes, serve as keys. They are inserted into the index
tree.
Fig. 1 shows parts of the generated B-Tree, after all root-
to-leaf path of a small example document were inserted.
The same path may occur in a document several times
with different instance values. However, a key is added
only once into the tree. For this reason, the following
information is transmitted for each key additionally: the
number of occurrences of the path in the document tree,
the values of attributes or the context of elements, and the
location(s) of the FUU(s) containing the indexed nodes.

Fig. 1: Parts of a B-Tree

4.3. THE MAPPING OF THE TREE TO A LINEAR

STREAM

Once the index structure is generated, the information is
stored in the index stream. In a typical scenario the index
stream is sent together with or before the description
stream. In any case, the hierarchical B-Tree is mapped to
a linear stream.
For the stream mapping, the tree is traversed in a depth-
first manner, and the nodes are packed into the stream in
the order they are visited. This order is signaled in Fig. 1
with the node numbers of the tree.
For each node in the stream, the start offset of all children
beside the first child is coded too. This enables a skipping
of undesired node information. If a node does not have
any children, the offset is set to zero. For the first child

node, the offset is not transmitted since it is coded
immediately after its parent node. Fig. 2 shows parts of
the stream for the B-Tree represented above.

Fig. 2: Example of an Index Stream

4.4. THE INDEX LOOK-UP BASED ON THE TREE
STREAM

For a look-up we consider an XPath [20] like query string
as input. An index look-up in the B-Tree starts at the root
node. Through comparison of the search pattern with the
keys it is decided in which child node the searched entry
can be found. Thus, if the desired key is not in the parent
node only one child has to be visited.
The usage of offsets in the index stream enables one to
directly process the proper node without having to parse
the information of other nodes stored in between both
nodes in the stream. Thus, during the look up, particular
node information are read until the node content matches
the query string, or no more children are available. In the
latter case, the desired information is not present in the
indexed document.
As an example, the following query:
'Mpeg7/Description/MultimediaContent/Video/Usage
Information/Availability/Dissemination/Disseminator/Age
nt/Name' where the name of the agent is "Discovery"
(short MDMVUADDAN = "Discovery") should be
processed. Comparing the query string with the entry in
the first node leads to a further proceeding in the second
node. Then the search proceeds at the node with the
number 5. This node can be directly accessed through the
usage of the coded child offset. Here, the string matches
with the first key and the FUU containing the desired
element can be identified. The search path through the
original B-Tree for this example is presented in Fig. 3.

Fig. 3: An Example of a Search Path

In this example, only the information of the nodes 1, 2, 3,
and 5 are parsed, the other data in the stream is skipped or
ignored.

5. IMPROVEMENTS

5.1. COMPACTER CODING OF THE PATHS

First experiments have shown that the size of the index
information may become almost that big as the size of the
BiM encoded data. Thus, we considered improvements in
order to reduce the index size. We examined several
possibilities like the compression of the string repository
using an entropy codec, coding of the XPaths relative to
their neighbor or parent paths, or the binary coding of the
paths as proposed in the MPEG-7 standard [6]. We
implemented the binary coding of the key paths. A binary
encoded path consists of a sequence of tree branch codes
(TBCs) which are tokens for the elements appearing in
this path followed by a sequence of position codes for
those elements that may occur more than once. Since the
positions do not influence the search in the index tree they
were omitted. Experiments have shown that the
compression of the paths can lead to a reduction of the
index size of about 20%.

5.2. EXTENDED QUERY FUNCTIONALITY

Because our prototype was optimized concerning the
storage size the position codes were omitted in our first
approach. But while they do not influence the navigation
within the B-Tree we propose to use them to answer more
complex queries. In a modified version of our index
system still only the tree branch codes serve as key entries
in the B-Tree. But in order to provide a more complex
query functionality the position codes are transmitted too.
In [21] we have shown, how position codes can be used to
answer multiple-field queries, i.e. queries that contains at
least to conditions.

5.3. DATA ORGANIZATION

While the indexed paths were stored in a tree, the
instances belonging to a certain paths were not sorted.
Due to this, a linear search of all values belonging to one
path was required. To overcome the this problem, we
decided to implement a data organization that allows a
more efficient search within the indexed values. As first
approach we built a data structure called value tree for
each key entry. A detailed explanation of this concept can
be found in [21].

6. CONCLUSION AND OUTLOOK

In this work, we proposed an index system that provides
fast random access to binary encoded MPEG-7
descriptions. The approach was motivated by the
increased usage of MPEG-7 in mobile multimedia
application relying on metadata for identification, filter
and search, for instance Electronic Program Guides
(EPG), Multimedia Mail Services, etc.
With our approach, we have shown that the B-Tree is a
well suited data structure to index XML-based MPEG-7
data. We proposed a coding scheme that allows the
streaming of an index tree. Additionally, we improved our
prototype by applying the binary coding of XML based
path structures in order to reduce the index size. The
functionality was extended to support multiple-field
queries. For this purpose, we utilize the position codes of
the MPEG-7 BiM. Finally, we achieved a decrease in
look-up time by the usage of value trees for the element or
attribute values which belong to the same path.
Future work will address further improvements on the
index size. Especially compact e.g. differential encoding
of position codes have to be investigated. Based on the
observation that on average 35% of the present value
stream consists of position information improvement in
the position coding can have significant effect on the
index size. With respect to processing efficiency we will
evaluate the gain of the reordering of entries in the index
tree, when the frequency of different queries is considered
too. At the moment, we assume a uniform distribution of
the key entries in the tree.

9. REFERENCES

[1] Jos M. Martinez. “Overview of the MPEG-7 Standard”,

N4980, Klagenfurt, July 2002. Available from
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-
7.htm.

[2] B.S. Manjunath, P. Salembier and T. Sikora. “Introduction to
MPEG-7.” John Wiley & Sons Ltd., 2002.

[3] J. Heuer, J.L. Casas, A. Kaup: “Adaptive Multimedia
Messaging Based on MPEG-7 - The M3-Box“.Proc. Second
International Symposium on Mobile Multimedia Systems &
Applications, pp. 6-13, Delft, Nov. 2000

[4] Harald Kosch: “Distributed Multimedia Database
Technologies supported by MPEG-7 and MPEG-21”, CRC
Press, 248 pages, November 2003

[5] Official homepage of the TV-Anytime forum (see
http://www.tv-anytime.org/).

[6] U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, A. Kaup.
”An MPEG-7 Tool for Compression and Streaming of XML
Data”, Proc. IEEE International Conference on Multimedia
and Expo, pages 521-524, Lausanne, Switzerland, August,
2002.

[7] H. Liefke and D. Suciu. ”XMill: An Efficient Compressor for
XML Data”. Proc. of the ACM SIGMOD International
Conference on Management of Data, pages 153-164, Dallas,
Texas, USA, May 2000.

[8] M. Girardot and N. Sundaresan. ”Millau: An Encoding
Format for Efficient Representation and Exchange of XML
over the Web”. 9th International World Wide Web
Conference, www9.org, Amsterdam, The Netherlands, May
2000.

[9] P. Tolani and J.R. Haritsa. “XGRIND: A Query-friendly
XML Compressor”. Proc. of IEEE Int. Conf. on Data
Engineering (ICDE 2002), pages 225-235, San Jose
California, USA, February-March 2002.

[10] J. K. Min, M. J. Park and C. W. Chung, ”XPRESS: A
Queriable Compression for XML Data,”. Proc. of the ACM
SIGMOD International Conference on Management of Data,
San Diego

[11] B. Cooper, N. Sample, M. Franklin, G. Hjaltason and M.
Shadmon. “A Fast Index for Semistructured Data”. Proc. of
the VLDB Conference, pages 341-350, Roma, Italia, August
2001.

[12] L. K. Poola and J. R. Haritsa. “SphinX: Schema-conscious
XML Indexing”. Technical Report RE200104, Indian
Institute of Science, Bangalore, India, 2001.

[13] H. V. Jagadish, N. Koudas and D. Srivastava. “On Effective
Multi-Dimensional Indexing for Strings”. Proc. of the ACM
SIGMOD International Conference on Management of Data,
pages 403-414, Dallas, Texas, USA, May 2000.

[14] Q. Li and B. Moon. “Indexing and Querying XML Data for
Regular Path Expressions”. Proc. of the VLDB Confernce,
pages 361-370, Roma, Italia, August 2001.

[15] Chin-Wan Chung, Jun-Ki Min, Kyuseok Shim. ”APEX: an
adaptive path index for XML data”. Proc. of the ACM
SIGMOD International Conference on Management of Data,
pages 121-132, Madison, Wisconsin, June 2002.

[16] F. Rizzolo and A. Mendelzon. “Indexing XML Data With
ToXin”. Proc. of the Int. Workshop on the Web and
Databases, pages 49-54, Santa Barbara, California, USA,
May 2001.

[17] Alberto O. Mendelzon. “ToX: The Toronto XML Server”.
Proc. Int. Database Engineering and Applications Symposium
(IDEAS). IEEE CS Press. Edmonton, Canada, July 2002.

[18] Rudolf Bayer and Edward M. McCreight. “Organization and
maintenance of large ordered indexes”. Acta Informatica,
1(3):173-189, February 1972.

[19] Beng C. Ooi and K.-L. Tan. “B-trees: Bearing Fruits of All
Kinds". IEEE CS Press. Australasian Database Conference
2002, Melbourne, Victoria, January/February 2002.

[20] James Clark and Steve DeRose. “XML Path Language
(XPath), version 1.0”, W3C recommendation. Technical
Report REC-xpath-19991116, World Wide Web Consortium,
November 1999

[21] Andrea Kofler-Vogt and Harald Kosch: “BeTrIS: Efficient
Access to MPEG-7 Encoded Data”. Technichal Report
TR/ITEC/04/2.10, University Klagenfurt, April 2004

	Index
	Conference Info
	Welcome Message
	Venue
	Sponsors
	Committees

	Sessions
	Wednesday, 13 April, 2005
	WedAmOR1-Special Session on Video Surveillance I
	WedAmOR2-Special Session on Semantic Multimodal Analysi ...
	WedAmOR3-Special Session on Video Surveillance II
	WedAmOR4-Special Session on Semantic Multimodal Analysi ...
	WedPmOR1-Special Session on Semantic Multimedia Analysi ...
	WedPmOR2-Face Detection and Recognition I
	WedPmOR3-Special Session on Semantic Multimedia Analysi ...
	WedPmPO1-Posters I

	Thursday, 14 April, 2005
	ThuAmOR1-Video Coding and Transmission
	ThuAmOR2-Audio-Visual Processing
	ThuAmOR3-Special Session on Mixed and Augmented Reality
	ThuAmOR4-Special Session on Real-Time Object Tracking: ...
	ThuPmOR1-Special Session on Universal Multimedia Access ...
	ThuPmOR2-Special Session on Media Security
	ThuPmPO1-Posters II
	ThuPmOR3-Face Detection and Recognition II

	Friday, 15 April, 2005
	FriAmOR1-Search and Retrieval
	FriAmOR2-Analysis and Classification I
	FriAmOR3-Special Session on Personalised Knowledge Syst ...
	FriAmOR4-Watermarking
	FriPmOR1-Special Session on 3D Reconstruction and Rende ...
	FriPmOR2-Analysis and Classification II
	FriPmOR3-Special Session on 3D Reconstruction and Rende ...
	FriPmPO1-Posters III

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	Ó
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Multimedia content analysis and understanding
	Content generation and manipulation
	Content-based browsing, indexing and retrieval of image ...
	2D/3D feature extraction
	Advanced descriptors and similarity metrics for audio a ...
	Relevance feedback and learning systems
	Supervised and unsupervised segmentation of objects in ...
	Identification and tracking of regions in scenes
	Voice/audio assisted video segmentation
	Analysis for coding efficiency and increased error resi ...
	Analysis and understanding tools for content adaptation
	Multimedia content adaptation tools, transcodingand tra ...
	Content summarization and personalization strategies
	Data hiding and copyright protection of multimedia cont ...
	Semantic mapping and ontologies
	Multimedia analysis for advanced applications
	Multimedia analysis for surveillance, broadcasting, mob ...
	Knowledge-Assisted Multimedia Analysis
	Semantic Web and Multimedia

	Search
	Help
	Browsing The Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations And Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Joerg Heuer
	Harald Kosch
	Andrea Kofler-Vogt

