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ABSTRACT

This contribution presents a stochastic analysis model, aim-
ing at segmentation of the motion vector fields from com-
pressed video sequences into regions of coherent motion.
We propose a stochastic motion coherency model based on
parametric affine motion. This model applies the 2-D Gibbs-
Markov random field to identify motion-coherent smooth-
contour regions and corresponding motion model estimates.
This stochastic approach inherently addresses the unrelia-
bility of such motion vector fields through the use of the mo-
tion coherency-based confidence analysis. The experimen-
tal optimisation algorithm based on this model demonstrates
visually convincing results from two standard sequences.

1. INTRODUCTION

Motion is a significant source characterizing temporal vari-
ations in video sequences [1]. It conveys rich information,
enabling humans to effortlessly understand the object and
camera movement in the recorded scene. However, it re-
mains challenging to instruct computers to perform this task.
This visual understanding problem is also present in mul-
timedia communications. For example, a video messaging
scenario and system [2] enables a delivery of the video mes-
sages between different types and capabilities of terminals.
For a terminal of limited resources, this system proposed
a number of alternative presentations such as camera shot
substructures, key-frame sequences, or textual annotations.
In [2], the authors described a number of steps to realize this
concept; one step being motion-based spatial segmentation.
This paper proposes a new motion segmentation method
based on the affine motion and the two-dimensional (2-D)
Gibbs-Markov random field [3].

This theory has been used successfully to solve simi-
lar problems such as change detection [3] and region seg-
ment based motion estimation [1]. Focussing on the ad-
dressed motion segmentation, most existing works such as
a moving-layer representation based approach [4] or a com-

bined framework of the motion estimation and segmenta-
tion [5], are, however, not suitable for a low-complexity
constraint required by the target messaging scenario [2].

This paper presents a novel stochastic motion coherency
model, aiming at segmentation of an encoded video motion
field into multiple regions using local and region coherency
constraints. This model is suitable for a low-complexity op-
timisation based on a compressed video motion field (e.g.
from MPEG-4) . The method copes with the motion vector
unreliability, often found on such a motion field, through
the use of motion coherency-based confidence analysis. The
model exploits the affine motion model [1] to determine the
motion coherency at two levels. The local motion coherency
fosters the motion vector smoothness within the neighbor-
hood, while an examination at the region level maximizes
the global model coherence considering the entire mem-
bers of a region. Based on the experimental results, this
method is capable of identifying meaningful regions corre-
sponding to human visual comprehension, thereby suitable
for the content-aware video presentation adaptation.

The paper is organized as follows. Section 2 presents
the stochastic modeling method. Section 3 describes the
essence of the optimisation algorithm. Section 4 reports the
experimental results. Section 5 concludes the paper.

2. STOCHASTIC MODELING METHOD

2.1. Problem Formulation and Solution Idea

Motion vector field segmentation is viewed in this paper as
an estimation problem. Given an observed motion vector
field V, the analysis shall derive a partition ) composed
of a number of regions or motion vector clusters, such that
the conditional probability Pr(Q|V') is maximized. Apply-
ing Bayes rule and the maximum a posteriori (MAP) es-
timation [3], the analysis hence determines a partition ()
that maximizes the likelihood Pr(V'|)) and the priori prob-
ability Pr(Q). The likelihood exploits the affine parametric
motion model (Sect. (2.2)) to assess the motion coherency
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Fig. 1. Second-order neighborhood system G(x) of the motion
vector at coordinate x and the relative coordinate shift s with re-
spect to the neighbor coordinate n

probability at two levels: at the neighborhood for the lo-
cal smoothness, and at the region level to guarantee that
each motion vector fits to the assigned region motion model
(Sect. (2.3)). The priori probability evaluates the region
border characteristic by choosing the potential function that
favors region border smoothness (Sect. (2.4)). The condi-
tional probability Pr(Q|V') is evaluated in Sect. (2.5).

Following are the terminologies used in this paper. At
a 2-D coordinate x = [z y]", v(x) denotes the encoded
motion vector, v’(x, k) the motion vector computed by the
k-th region motion model, and v(x|n, k) the motion vector
predictor estimated from the encoded motion vector v(n)
and the k-th region motion model.

2.2. Region Motion Model
A 2-D affine motion model [1] describes an object motion
based on the following motion vector expression

V(x, k) = Agx + by, (1)

with A € R?*2 and by, € R2 being the motion model
parameters of a region Uy, k=1,..., A,

2.3. The Likelihood: Motion Coherency Analysis

Given a partition (), the likelihood is a multiplication of the
local and region motion coherency probabilities:

Pr(V]Q) = (V]Q) - T5(V|Q). )

The first multiplicand II, (V'|Q) defines the local motion
coherency of the encoded motion vector field, assessed in

the second-order neighborhood system G(x) of the random
field [3] (cf. Fig. 1),

A
Ha(V‘Q) = ZieXp [_Z {Gk : Z Aa(xak)}] ;

k=1 XEUy,
3)
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Fig. 2. Illustration of motion vector predictor analysis

with Z, being a normalisation constant, Gy, a coefficient for
region Uy, and the local incoherence function A, (x, k) in-
dicating the median of prediction errors d(x, n, k) between
vector v(x) and predictor v(x|n, k). As such, the local inco-
herence function A, (x, k) can be expressed as:

Au(x, k) = median ne gixne, {6<x, n, k)}, 4

with G(x) being a set of vector coordinates in the neighbor-
hood system of motion vector v(x), and the prediction error
being calculated in relation to the predictor, i.e.,

§(x,m, k) = |ux (x) — ox (x|n, k)| + |vy (x) — by (x|n, k)|.

The v(x) predictor v(x|n, k) is calculated based on the priori
motion vector at n that is related to x by a relative coordinate
shift s (cf. Fig. 1). We introduce a motion vector justifier r
that represents a vector adjustment based on the interpreta-
tion of v(n) at coordinate x using the k-th model (cf. Fig. 2):

v(x[n, k) = v(n) +r. S

Upon the notion of s in Fig. 1, the motion vector justifier r
can be formulated under the k-th motion model as:

r=v(x,k) —v(n,k) =v(n+s,k) —v’(nk).
Since the affine motion model is linear, we obtain
r=A;(n+s)+ by — (Agn+ bg) = Ays, (6)

that can be substituted to Eq. (5):

v(x|n, k) = v(n) + Aygs. @)

According to this derivation, it is apparent that the predictor
v(x|n, k) can be calculated from a motion model parameter
matrix Ay, a motion vector v(n) at neighbor n, and a relative
coordinate shift s, which is known a priori from the chosen
neighborhood system.

In Eq. (2), the likelihood I1,, (V'|@) is regularized by the
second multiplicand I3 (V'|Q@). This probability defines the



region motion coherency likelihood that assesses how well
each motion vector fits to the region motion model:

A
Hs(V]Q) = ZLBeXp lz {Hk )T A, k)H ,

k=1 XeW,
3

where Z3 denotes a normalisation constant, Hy, for a k-th
region coherency coefficient, and Ag(x, k) for the region
incoherence function:

Ag(x, k) = Jux(x) — o' x (X, k)| + oy (x) = vy (x, k)]

2.4. A-Priori Density for Region Boundaries

As 2-D projections of most physical regions exhibit smooth
borders [3], the priori is modeled by the 2-D Gibbs-Markov
random field, which favors smooth-contour regions:

Pr(Q) = Zi exp [-E(Q)] = Zi exp [-NgB — N (],
)

with Z, being a normalisation constant and the energy E(Q)
assessing the state of partition by enumerating motion vec-
tor pairs on the region borders. As such, E(()) is parameter-
ized by N the number of horizontal or vertical border mo-
tion vector pairs, and N for the diagonal ones (cf. Fig. 1),
with B and C being constants.

2.5. MAP Evaluation

In the evaluation of the Pr(Q|V'), we take the negative log-
arithm of Pr(V'|Q) - Pr(Q) using (3), (8), and (9):

—log{Pr(Q[V)} = —log{(Pr(V|Q) - Pr(Q))}

A
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Thus, an optimal partition () that maximizes Pr(Q|V) shall
minimize this cost, i.e., maximizes local and region motion
coherency as well as region boundary smoothness.

3. OPTIMISATION ALGORITHM

The simplified affine motion model in [6] is adopted, which
describes motion in terms of translations ¢ x and ¢y, zoom-
ing factor C'r, and rotational velocity ¢z perpendicular to
the image plane. For region ¥y, a motion vector at coordi-
nate x is modeled by

V(x, k) ~ (CF,k -1 —Cpy SOZ,k)x N <tx71c>_
Crrozr Crrp—1 ty,k

(1D
The optimization process starts with the confidence assess-
ment using the local motion coherency in Eq. (3). In this
evaluation, only motion vectors located in a smooth neigh-
borhood are attached with a high confident value. For those
in a more heterogeneous proximity, the confidence value
shall decrease in an exponential scale as defined in Eq. (3).
The confidence measure ranges between 1 and 0. The al-
gorithm estimates the hypothesized region models based on
this assessment, and assigns each vector to the most proba-
ble region using the following iteration.

At the beginning of each iteration, the hypothesized set
of motion vectors shall entail every reliable vector which
still has not been assigned with a label. Based on this set,
the algorithm estimates the region motion model using the
linear regression. The estimation employs a weighted MSE
criterion applying the motion vector confidence measure as
coefficient of the regression square error corresponding to
the test motion vector. Only motion vectors which fit to the
estimated region model are assigned with the label of this
region. This fit test is based on Eq. (8) indicating the likeli-
hood that a motion vector is represented by the test motion
model. The algorithm iterates this assignment procedure for
the remaining unassigned motion vectors until each reliable
motion vector is assigned with a region or size of the hy-
pothesized set is smaller than a predefined value.

Through this process, we will obtain A, a number of re-
gions, and the approximate partition topology. Next, the
algorithm attempts to improve the MAP estimate by using
Eq. (10). At each motion vector on a region border, the
algorithm tests if the region label reassignment using the
neighboring label may increase the MAP estimate. For each
investigated vector, the region reassignment is taken place
only once at the highest MAP increment in order to insure
the gradual smoothening change. This procedure iterates
in a raster-scanning fashion until this reassignment scheme
does not improve the MAP estimate, i.e., the optimal parti-
tion or final segmentation is found.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

The presented algorithm was tested with sequences Fore-
man and Documentary about buildings (denoted here as Lan-
caster) [7]. The sequences were encoded by an MPEG-4 en-
coder [8] configured at 25-fps rate in CIF format. The mo-
tion vector field was estimated using 16-pixel search range
and 512-kbps rate control (TMS5 algorithm).

The two test motion vector fields of the coded frames
(cf. Fig. 3(a)) were captured at the moment of no camera



motion and only object motion. In the Foreman sequence,
the foreman head turned towards to the right side of the im-
aged frame, while his mouth and chin moved towards the
bottom-right image corner. In the Lancaster sequence, both
coach and horse moved towards the right side of the frame.
The results are depicted in Fig. 3(b) and 3(c). In the confi-
dence map illustration, a block of the absolute green color
represents the highest confident value, while the absolute
red for the lowest one. In the segmentation, a unique color
is used for a region. No color is painted at the blocks of
unreliable motion vectors.

It is apparent in Fig. 3(b) that an unreliable vector (in
a red-color range) indicates either a failure from the mo-
tion estimation process or an appearance of new coded sig-
nal. The first case can be observed at the motion vectors
of a relative red block color surrounded by several green
blocks. For the second case, one may notice from the left
side of the foreman face and the coach. The segmentation
results are depicted in Fig. 3(c). For the Foreman sequence,
two regions were defined on the foreman face. The fore-
head, nose, and cheek areas were defined to a single motion-
coherent region because the motion field upon these areas
was strongly influenced by a head turn. Meanwhile, an-
other region was formed approximately over the chin area
to represent a unique motion semantic. For the Lancaster
sequence, motion vectors on the coach and the horse were
grouped to two different motion-coherent regions. It is em-
phasized that based on these results this method is suitable
for the addressed goal, since reliable motion vectors were
correctly identified and clustered to represent motion se-
mantics on the captured scene.

5. CONCLUSION

The paper presents a stochastic motion coherency model
and algorithm for motion field segmentation on compressed
videos. The experiment demonstrates two example results
which are in agreement with human visualisation. Future
works shall identify motion-coherentregions between frames
based on multiple partitioning hypotheses.
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