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Abstract

This paper describes contributions to two problems related to
visual tracking: control model design and observation process
design. We describe the use of kernel-based Bayesian filtering
for the tracking control procedure, and feature-based tracking
to improve the observation process of tracking. In the kernel-
based Bayesian filtering framework, the analytical represen-
tation of density functions by density interpolation and density
approximation for the likelihood and the posterior contributes
to efficient sampling. Feature-based tracking combines rec-
tangular features with edge oriented histogram so that the
combined features are robust to illumination changes, partial
occlusion, and clutter while capturing the spatial information
of the target. The use of integral image allows the features to
be efficiently evaluated. The effectiveness of both algorithms
are demonstrated by object tracking results on real videos.

1 Introduction

Tracking algorithms generally involve addressing two basic
problems — tracking control and observation. A significant
body of research addresses these two issues — for example,
[3,5,7,13].

Based on the nature of their control procedures, tracking al-
gorithm can be classified into two categries: deterministic and
stochastic methods. Deterministic methods typically track by
performing an iterative search for the local maximum (or min-
imum) of a similarity cost function between the target and the
candidates. In stochastic methods, tracking is performed by
estimating the probability density function in the state space
of target motion and transformations. Deterministic trackers
are fast but sensitive to occlusion and clutter, while stochastic
ones are more robust and capable of recovering from tempo-
rary tracking failures.

The target representation and similarity measurement — ob-
servation model — are also very important to the performance
of trackers, and their design is closely related to the feature
selection problem. The color histogram is widely used in ob-
ject tracking algorithms since it is robust to noise and partial
occlusion. However, it cannot deal easily with illumination
changes and lacks any spatial information. On the other hand,
contour-based methods are more invariant to lighting condi-
tions, but computationally expensive and not robust to clutter.

In this paper, we describe our research on the tracking con-

trol and observation problems. In section 2, a Bayesian fil-
tering framework based on a density approximation technique
is presented, where the probability density function in each
step is a mixture of Gaussians. The advantage of maintaining
an analytic representation of density functions lies in efficient
sampling, and the density interpolation is incorporated for ac-
curate approximation of the measurement function. The fea-
ture combination of the Harr-like rectangular features [14] and
the edge orientation histogram [5] as an observation model is
discussed in section 3. The combined features are evaluated
efficiently and used in the measurement step to improve the
speed and robustness of the observation.

2 Tracking by Bayesian Filtering

In this section, we introduce a Bayesian filtering framework,
where the relevant density functions are approximated by
kernel-based representations and propagated over time. This
work is an extension of a previous paper [6], which includes
more mathematical details.

2.1 Kernel-Based Bayesian Filtering

In a dynamic system, the process and measurement model are
given by

X = g(Xe—1, 1) 1)

7, = h(x¢, vi) 2)

where v; and u; are the process and the measurement noise,
respectively. In the sequential Bayesian filtering framework,
the conditional density of the state variable given the prior
p(x¢—1|2z¢—1) and the measurement p(z.|x;) is propagated
through prediction and update stages as,
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where k = [ p(z:|x¢)p(x¢|z¢—1)dx; is a normalization con-
stant. The posterior at time step ¢ denoted by p(x;|z;) is used
as the prior in step ¢ + 1.

In our kernel-based Bayesian filtering, the posterior den-
sity function is represented with a Gaussian mixture whose
number of components is equal to the number of modes in the
underlying density. Therefore, our main goal is to retain such



a representation through the prediction and update steps, and
to represent the posterior density in the following step with a
Gaussian mixture form.

The details of the proposed filtering framework are de-
scribed next. First, the unscented transformation (UT) [8, 12]
is used in the prediction step to maintain a Gaussian mixture
representation even with non-linear process model. By the
UT, the predicted density function is accurate up to the sec-
ond order of the Taylor expansion. Second, samples are drawn
from the proposal distribution — p(x;|z;—1 ), and the measure-
ment density function is derived by density interpolation tech-
nique whose output is also a Gaussian mixture. The posterior
is obtained by multiplying two mixtures, prediction and mea-
surement functions. To prevent the number of mixands from
growing too large, density approximation technique [6] based
on variable-bandwidth mean-shift is applied to derive a com-
pact representation for the posterior density. After the update
step, the final posterior density is given by a compact Gaussian
mixture form.

The most important characteristic of our Bayesian filtering
is that every density function is represented with a continuous
function — a Gaussian mixture. The analytical representation
of density functions and the kernel-based particles contribute
to efficient sampling by which the number of samples can be
reduced significantly in high dimensional problems. Also, this
technique can be applied to the cases in which the only small
number of samples is available or the measurement for each
particle is very expensive.

2.2 Density Interpolation

In the measurement step, the likelihood values are known for
a set of samples, and the measurement density can be interpo-
lated with sample likelihoods.

A Gaussian kernel is assigned to each sample whose mean
and covariance corresponds to the sample location and the
bandwidth, respectively. The bandwidth is selected based on
k-nearest neighbors (KNN), which is similar to the methods
discussed in [1, 2]. In short, each sample is intended to cover
the local region around itself in the d-dimensional state space
with its bandwidth, and the kernel bandwidth is determined
by the distance to the k-th nearest neighbor of the sample. By
this method, samples in dense areas have small bandwidths
and the density will be represented accurately, but sparse ar-
eas convey only relatively rough information about the density
function.

Denote x; as the mean location and P; as the covari-
ance matrix for the i-th sample. Also, suppose that [; is the
likelihood value on the ¢-th sample. Given x;, P; and [;
(i =1,...,n), the non-negative least square (NNLS) method
[9] is employed to compute the weight as follows. Define an
n X n matrix A having a probability of j-th sample w.r.t. i-th
kernel with a unit weight in (4, j), and an nx 1 vector b having
l; in its ¢-th row. Then, the weight vector w can be computed

by solving the following constrained least square problem,

. Ch2
min [|Aw — b]| 5)
subjecttow; > 0fori=1,...,n.

The size of matrix A is determined by the number of sam-
ples. When the sample size is large, sparse matrix operation
methods can be used to solve w efficiently.

Usually, many of the weights will be zero and the final den-
sity function will be a mixture of Gaussians with a small num-
ber of components. The density interpolation simulates the
heavy-tailed density function more accurately than the density
approximation introduced in [6], while the density approxi-
mation generally produces a more compact representation.

2.3 Object Tracking

Our kernel-based Bayesian filtering has the advantage of man-
aging multi-modal density functions with a relatively small
number of samples. In this section, we demonstrate the per-
formance of the kernel-based Bayesian filtering by tracking
objects in real videos.

The basic Bayesian filtering steps are not changed, and the
process and the measurement models are described below.

e process model: random walk (x; = x;_1 + uy)

e measurement model: inverse exponentiation of Bhat-
tacharyya distance between the target and the candidate
histograms as suggested in [13]

In our experiment, two different sequences are tested. In
the first sequence, two objects — a hand carrying a can — are
tracked with 200 samples. The state space is described by
a 10 dimensional vector, which is the concatenation of two
5 dimensional vectors representing two independent ellipses.
The tracking result is shown in figure 1, and our algorithm
successfully tracks two objects.

Figure 1:
47,112, 187,278, 360, 400.

Object tracking result of can sequence at t =

The upper bodies of two persons are tracked in the second
sequence, in which one occludes the other completely several



times. A 6 dimensional vector — (x, y, scale) for each rectan-
gle — is used to describe the state, and 100 samples are used.
Figure 2 demonstrates the tracking results, and our algorithm
shows good performance in spite of severe occlusions.

For comparison, the tracker based on SIR particle filter is
also implemented, and compared with our algorithm. The SIR
algorithm shows unstable performance for the same sequence,
and, according to experiments, one would need to run the SIR
algorithm using at least 400 particles to obtain a comparable
result with our algorithm using 100 samples.

Figure 2: Object tracking result of person sequence at t =
1,92,134,193, 216, 300.

3 Feature-Based Tracking

The observation model is used to measure the observation
likelihood of the samples. Many observation models have
been built for particle filtering tracking. A tracker based on
contour templates [7] gives an accurate description of the
targets but performs poorly in clutter and is generally time-
consuming. The initialization of the system is relatively
difficult and tedious. In contrast, color-based trackers are
faster and more robust; the color histogram is typically used
to model the targets to combat partial occlusion and non-
rigidity [13, 3]. The drawback of the color histogram is that
spatial layout is ignored, and the trackers based on it are easily
confused by a background with similar colors. The combina-
tion of the two features provides better performance which is
described below.

3.1 Color Rectangle Features

Rectangle features were introduced by Viola and Jones for
real-time object detection [14]. In their method, the grayscale
image was converted to an integral image format (an image in
which at each pixel the value is the sum of all pixels above
and to the left of the current position). The sum of the pix-
els within any rectangle can then be computed in four table
lookup operations on the integral image. Color images can be
treated as multi-channel intensity images to generate multi-
channel integral images.

To model the target using color information, we pick n rec-
tangular regions Ry, ..., R, within the object to be tracked.
Each rectangle R; is represented by the mean (r, g, b) color of
the pixels within region R; (other color spaces can be consid-
ered similarly)

(Tivgivbi) = Z (r(x,y),g(x,y),b(x,y)) /Ai, (6)

(z,y)ER;

where A; is the number of pixels within R;. The mean color
vector (1}, g, bF) of each region R; can be computed dur-
ing initialization. The reason we choose this color represen-
tation instead of the popular color histogram is that it encodes
the spatial layout of the targets and offers robustness against
noise. Such a color representation of the targets has been used
in [4] for head tracking, where a hypothesize-and-test proce-
dure is used to find a match between frames. In [4], for real
time performance they can only consider a relatively small
number of hypotheses, since there was no efficient way to
evaluate the rectangle features.

The similarity between the template and the current frame
p(k*, k(x;)) can be measured by the Euclidean distance be-
tween these rectangle features. The likelihood distribution is
given by p(z¢|x;) oc e=P" (" k(x)/o*

The number of rectangles within the object can be as small
as two in the first stage. There are two reasons for such a
setup: one is efficiency, the other is that we want to keep more
candidates in the first stage for robustness and prune those
mostly negative samples as soon as possible. This strategy
has been proven successful in object detection [14], and we
observe the same for tracking.

3.2 Edge Orientation Histogram

To detect edges, we first convert color images to grayscale
intensity images. Edges are detected using the horizontal and

vertical Sobel operators: K, and K:
Ga(z,y) = Ko x I(2,y),  Gylz,y) = Ky x I(2,y). (7)

The strength and the orientation of the edges are

S(x’y) =
9 —
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We also apply a threshold T" to S(z, y) to remove noise (T is
set to 100 in our experiments). The edges are sorted into K
bins with their strengths S(z,y). Figure 3 shows an example
of the global edge orientation histogram of the walker in the
image.

The edge orientation histogram within a rectangle region
can be efficiently computed by treating it as K separated chan-
nels and accumulating K integral images [10]. The i-th bin
value within a rectangle is the sum computed by four table
lookup operations on the i-th integral image.



Figure 3: Edge orientation histogram. (Leff) Example image.
(Center) Edge strength image. (Right) Polar plot of edge ori-
entation histogram.

The similarity between the template and the current im-
age is computed using the Euclidean distance between the two
global edge orientation histograms as in [11].

3.3 Experiments

We use the Harr-like features to simultaneously track multiple
objects. Each object is associated with an individual template
and 1000 particles. Each object moves independently. The
proposed algorithm successfully tracked all objects through
all frames. The image size is 352 x 288. Examples of the
tracking results are shown in Figure 4. The tracking time with
respect to the frame index is shown in the left panel of Fig-
ure 5. The average tracking time for single object with respect
to the number of particles is shown in the right panel of Fig-
ure 5. The same procedures and configurations are applied to
the color histogram based tracker and the corresponding track-
ing time is shown in Figure 5. We find that once the integral
images are built, the evaluation of the observation likelihood
by the proposed method is independent of the size of regions
and is very efficient. In contrast, for the color histogram based
method or other methods, the bottle-neck is the building of the
histograms whose complexity is proportional to the number of
particles and the size of the regions.
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