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ABSTRACT 
 
Single particle fluorescence microscopy poses specific 
computer vision problems that need to be addressed in 
detail. Illumination noise, resulting from the light 
fluorescence characteristics of observed samples, hinders 
the performance of traditional segmentation techniques 
such as brightness thresholding and block matching shape 
analysis. This paper studies the characteristics of 
illumination noise and its effect on these segmentation 
techniques. 

 

1. INTRODUCTION 
 
A recent breakthrough in biomedical science is the 
capacity to track individual particles such as viruses using 
fluorescence microscopy. This technique provides 
unprecedented detailed insight into biological problems 
that is impossible to obtain with traditional ensemble 
averaging approaches. It consists in labeling a single 
particle with one or very few fluorescent dye molecules, 
enabling individual particle tracking with high spatial and 
temporal resolution using fluorescence microscopy. This 
technique has been used by Seisenberger [1] to study 
infection pathways of adeno-associated viruses, Babcock 
[2] to study nuclear trafficking of viral genes and by 
Lakadamyali [3] for visualization of the infection of 
influenza particles.  

The new single particle tracking techniques are 
generating large quantities of video data that need to be 
processed. Current systems either depend on full manual 
segmentation or manual verification and correction of 
automatic segmentation and tracking results. These semi-
automatic systems rely on traditional image processing 
techniques (e.g. detection of local maximum followed by 
shape analysis [2][3]) that are not necessarily adequate 
for this imaging system. There are previous examples in 
literature (Gravel [4]) where the importance of studying 
the noise characteristics of medical image systems, 

instead of just assuming them, is shown. Results on this 
paper will show that single particle tracking using 
fluorescence microscopy has specific characteristics that 
automatic video processing applications should be aware 
of. 

Illumination noise is analyzed in Section 2 and target 
shape in Section 3. Segmentation results are detailed in 
Section 4 and final conclusions drawn in Section 5. 
 

2. ILLUMINATION NOISE 
 
A major source of noise in fluorescence microscopy is 
that, although specific targets are labeled with highly 
fluorescent markers, the whole sample is typically lightly 
fluorescent, creating a global illumination pattern that we 
call illumination noise. This noise can reduce our target-
background contrast significantly making it difficult to 
detect and segment individual particles in some situations.  

Illumination noise is not spatially homogenous. In 
fact, more noise seems to be present in the center of the 
image than in the edges. We measured each pixel’s mean 
gray value µp (1) and variance Vp (2) where f(x,y) is the 
pixel value for frame t from a total of N frames.  

 ∑=
t

p yxfNyx ),(1),(µ  
(1) 

 [ ]2),(),(1),( ∑ −=
t

pp yxyxfNyxV µ
 

(2) 

All experiments were done using a Pentium 3.2 Ghz and 
software created with Visual C++. A sample of 400 
images from different sequences was selected from a 
larger set. The criterion for this choice was to choose 
sequences with either one or no particles per image (up to 
50 particles per image can be obtained) so that a high 
percentage of screen area is the noise we want to 
measure. Images are 8-bit gray level with 151x151 
resolution. They correspond to temporal resolutions from 
35 f/sec to 1 f/min and spatial resolutions of 85x85 nm2 
per pixel. All particles were manually annotated in the 
images, and a small area  (15x15) around them was not 
used in the noise studies.  

Each pixel’s mean gray value µp (1) and variance Vp 
(2) were obtained using all images and results can be seen 



on Figure 1 (images were contrast stretched for visibility). 
It is noticeable that both the mean and the variance of the 
noise seem to be stronger near the center of the images. 
This is confirmed by analysis of Figure 2, where the 
average values of µp are plotted against their distance to 
the center. 

We can also analyze the temporal homogeneity of 
illumination noise by observing the variation of the mean 
gray level of each image over time. These variations are 
quite drastic (approximately between gray level 20 and 
150) and its distribution is plotted in Figure 3. 

 

  
a) µp b) Vp 

Figure 1 – Spatial distribution of illumination noise. 
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Figure 2 – Influence of pixel position on illum. noise. 

 

 
Figure 3 – Temporal variation of illumination noise. 

 
3. TARGET SHAPE ANALYSIS 

 
An analysis of the local characteristics of the particle 
detection is also required. It is important to measure the 

size and shape stability of this detection, allowing a better 
understanding of the segmentation task. This was 
obtained by manually annotating all occurrences of the 
particle in the available frames, followed by the 
extraction of local characteristics. An ‘average shape’ 
was obtained for a 15x15 block, centered on the manual 
detection pixel, for all frames available. This was 
compared to random shapes obtained by selecting random 
points on the image, as well as with each individual 
particle annotation, using typical block-matching cost 
functions (Kuhn [5]), such as mean square error (3) and 
mean amplitude error (4). 
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 Original Normalized 
 MAE MSE MAE MSE 

Av.err 29,9 1361,8 36,3 1437,0 
Rand.  27,9 1501,7 82,85 9380,6 

Table 1 – Target shape similarity for original and contrast 
stretched images (Normalized). 

 

 
Figure 4 – MAE errors for orig. (black) and norm. blocks 
(light gray). Dotted lines show random block error. 

 
Results in Table 1 show that attempting to detect particles 
using block matching techniques directly on the image 
will probably fail since we are analyzing the target shape 
corrupted by illumination noise. MAE errors for particle 
blocks (average error) and random blocks are almost the 
same. We are interested in the target’s shape and not in its 
brightness (unreliable due to illumination noise), so our 
matching can be improved by previously applying 
contrast stretching (normalized) to the compared blocks. 
Figure 4 confirms this by showing that differences 
between particle and random blocks are now significant. 

 
4. SEGMENTATION RESULTS 

 
Two basic segmentation tools (brightness threshold, 
block matching) were selected since they are probably the 
simplest methods of two different approaches to the 
segmentation task: direct brightness (or color) and shape 



analysis. Also, video samples with one or zero particles 
totaling 500 frames were selected, reflecting a variety of 
noise situations (weak, medium and strong noise). The 
performance of these segmentation algorithms was tested 
using various error measures: accuracy (5), recall (6), 
average error distance (7), and total error distance (8). A 
correct detection (corr.det.) means that the algorithm 
correctly detected that there is one particle pS(xS,yS) in the 
image while total detections is the number of manually 
annotated pMA(xMA,yMA) particles in all images. Total 
pixels (tot.pixels) are the number of pixels pk(xk,yk) in all 
frames that are above or below a threshold k. 

 
detectionsincorrect  detectionscorrect 

detectionscorrect 
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Table 2 lists some results obtained for brightness 
thresholding segmentation (Gray), block matching using 
different error measures (MAE, MSE) and either without 
(orig) or with (norm) illumination normalization.  

 
 Acc. Rec. Av.Err  Tot.Err 

Gray 59% 100% 19,3 
Orig. MAE 59% 100% 47,1 
Norm. MAE 59% 100% 37,7 
Norm. MSE 59% 100% 39,5 

 

Gray (k = 200) 59% 100% 19,3 46,3 
Gray (k = 250) 59% 100% 19,3 18,6 
N.MAE (k=30) 94% 52% 29,4 39,7 
N.MAE (k=40) 72% 83% 33,0 45,8 

N.MSE (k=2000) 86% 66% 27,9 40,9 
N.MSE (k=2500) 78% 80% 31,5 42,3 
Table 2 – Segmentation errors (Acc. – Accuracy; Rec. – 
Recall; Av.Err – Av.Error.Dist; Tot.Err – Tot.Error.Dist) 

 
Lines 1-4 measure the unlikely case where we know that 
there is one target in the image and we just want to find it. 
Gray clearly obtains smaller average distance errors and 
while block-matching results are worse, they are 
improved significantly by the normalization step, which 
is not surprising given Table 1 results. However, when 
we attempt to improve our accuracy by using thresholds 
thus classifying images as having either one or zero 
targets, only block-matching algorithms improve their 
performance (higher accuracy, lower average distance 
errors) although they don’t have perfect recall (some 
targets are not detected). No significant difference is 
noticeable between using MAE and MSE error measures. 

A typical limitation of this type of methods is that they 
rely heavily on what are usually called “magic numbers”. 
The choice of threshold value is usually empirical and 

may lead to instable behaviors when test conditions 
change. It is therefore important to measure the sensitivity 
of the system to variations in threshold values. One way 
to do this is to plot our chosen error measures against 
various threshold values (Figure 5). 
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Figure 5.a) – Variation of errors using MAE 
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Figure 5.b) – Variation of errors using Gray 

 
Figure 5 allows some interesting observations. As 
expected, we have an accuracy/recall tradeoff in MAE, 
obtaining a common 75% at around kMAE = 35. 100% 
recall is only obtained when all images (and thus 59% 
accuracy) are selected. The average distance error is 
relatively stable and independent of kMAE  for recall 
values above zero. The most striking results is the 
apparent independence of Gray results from kgray. This is 
not true since the total error distance slowly decreases 
with k until it converges on the average error distance 
line. The imaging system uses some form of auto-gain 
mechanism that makes simple thresholding unable to 
distinguish between a strong signal or amplified 
illumination noise. 

It is common signal processing practice, especially 
when the signal is an image, to apply low-pass filtering to 
remove spot noise. This type of filtering might not be 



adequate for certain situations since the signal might 
contain significant high-frequency information that we 
want to extract (i.e. sharp edges). The same segmentation 
procedure that was used to obtain the results from Table 2 
was used, but now the images were previously filtered 
using various low-pass filters. 
 

  Gray (k = 200) MAE (k = 40) 
Type Size A/R (%)  Av.Er A/R (%) Av. Er 

No filter  59/100 19,3 72/83 33,0 
Mean  3 64/99 14,8 67/90 40,0 
Mean  5 60/63 10,1 65/87 40,8 
Mean  7 55/31 13,8 74/71 36,0 
Med.  3 64/99 14,7 69/88 37,5 
Med.  5 60/64 9,2 66/92 37,3 
Gaus.  3 62/99 15,1 66/90 39,9 
Gaus.  5 65/97 14,4 65/92 41,0 
Table 3 – Low-pass filtering results (A – Accuracy; R – 

Recall; Av.Er. – Av.Error.Dist) 
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Figure 6 – Influence of the temp. heterogeneity of noise 
 
Results presented in Table 3 show that low-pass filtering 
is not necessarily adequate for all segmentation methods. 
The performance of the Gray algorithm seems to 
improve: higher accuracy and lower average distance 
errors are generally obtained. Mean or median filters of 
size 5 obtain the lowest Av.Err. but at the expense of a 
40% drop in recall. There is no apparent difference 
between filters of size 3. On the other hand, the 
performance of block-matching algorithms seems to 
degrade (lower accuracy, higher Av.Err.), hinting that 
high-frequency components are quite important for such 
shape matching methods. Not surprisingly, best results 
are obtained by the median filter, due to its edge 
preserving characteristics.  
Finally, we’ve tested how the temporal heterogeneity of 
illumination noise affects segmentation results. The 
behavior of the average distance error with the average 
gray level of each frame was measured for two situations: 
Gray and norm. MAE results (Figure 6) show a clear 

increase of segmentation errors for high mean gray levels, 
confirming the suspicions of the noise studies of Section 
2. The results measuring the relevance of the distance to 
the image center were inconclusive. 
 

5. DISCUSSION 
 
This paper has shown that, even using a relatively small 
data set, some important characteristics of the imaging 
system used for single particle tracking have been 
highlighted. Tests hint at the spatial heterogeneity of 
noise (Figures 1 and 2), stronger in the center of the 
image, as well as temporal heterogeneity (Figure 3) when 
illumination noise is suddenly amplified, probably by 
some form of auto-gain mechanism of the imaging 
system. Target shape is affected by illumination noise but 
using a normalization step improves results (Table 1, 
Figure 4).  

Simple segmentation methods have been tested and 
their performance measured using various error measures. 
Results confirm the negative influence of illumination 
noise on low-level image processing techniques, 
especially the effect of its temporal heterogeneity (Figure 
6). Other observations also show the danger of relying on 
fixed thresholds (by plotting error variation with 
threshold value - Figure 5) as well as the positive and 
negative effect of low-pass filtering (Table 3). 

In the future we intend to tighten the cooperation 
between computer vision and biomedical science, by 
improving single particle imaging systems based on noise 
and low-level segmentation analysis. A much larger data 
set is needed where such data should ideally be obtained 
by different imaging systems. A parallel task is to 
develop robust automatic segmentation and tracking tools 
for such systems, based on the knowledge gained by the 
experiments here presented. 
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