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ABSTRACT

The image identification problem consists in identifying all the
equivalent forms of a given reference image. An image is equiv-
alent to the reference image, if the former results from the appli-
cation of an image operator (or a composition of image operators)
to the latter. Depending on the application, different sets of image
operators are considered. The equivalence quantification is done in
three levels. In the first level, we construct the set of equivalent im-
ages which is composed of the reference and its modified versions
obtained through the application of image operators. In the second
level, visual features are extracted from images in the equivalence
set and their distances to the reference image are computed. In
the third level, an orthotope (generalized rectangle) is fit to the set
of distance vectors corresponding to the equivalent images. The
equivalence of an unknown image with respect to a given refer-
ence is defined according to whether the corresponding distance
vector is inside, or outside, the orthotope. The results of our algo-
rithm are assessed in terms of the false positive and false negative
errors computed over different choices of reference images and
operators.

1. INTRODUCTION

The problem of search and retrieval of multimedia content is an ex-
citing field of research, which has attracted an increasing attention
from both scientific and business communities. The activities in
MPEG-7 standardization, and the more recent Still Image Search
project within JPEG (JPSearch) are evidences of this growing in-
terest.

In this paper, we describe a particular subset of search and re-
trieval problem which aims at the identification of all equivalent
forms of a given multimedia content. By equivalent, we mean, all
instances of a given content, which have been subject to a series
of equivalence operators. For instance, an image of Albert Ein-
stein (reference image), and all variants of that particular image,
after application of a JPEG compression with different parameters,
its zoomed versions, its filtered versions, etc. Such identification
system can be of interest in applications in which one is interested
in identifying all versions of a same content. Applications include
search and retrieval of content with illicit nature (child pornog-
raphy and other illicite images), or variations of a content with
copyright (images made by an artist).

Current methods permitting to identify image variations are
mainly based on two approaches: robust watermarking and robust
fingerprinting (or perceptual hashing). In watermarking [2], a sig-
nature is embedded in the reference image before broadcasting. A
given image is equivalent to the reference image only if the same

watermark is present. Watermarking techniques require to modify
the reference image, which might be problematic in some cases
(for example, when the reference image has already been broad-
casted without embedding any watermarks). In fingerprinting, the
reference image is analyzed to produce a signature correlated to its
content. A given image is equivalent to the reference image only if
their signatures are close enough. Fingerprinting techniques often
rely on a single feature, for example typical points of the Radon
transform [4], log-mapping of the Radon transform [7], or intra-
scale variances of the wavelet coefficients [10]. Our method is
similar to fingerprinting in the sense that there is no need to mod-
ify the reference image. However, contrary to most fingerprinting
approach, the present method combines multiple features.

In [3], feature distances such as structure, color and texture are
linearly combined to form a unique distance quantifying the sim-
ilarity of two images. The combination weights are empirically
estimated; it was also shown that adapting them to the nature of
the considered images increased the efficiency of the retrieval sys-
tem. In this paper, distances are non-linearly combined to define an
equivalence distance function, which is specific to each reference
image.

2. IDENTIFICATION PROBLEM

Let Ξ be the space of images. We consider a reference image R ∈
Ξ and a set of image operators O = {Oo(·)}o=1,...,O

with Oo(·) :
Ξ → Ξ. The equivalence class of R is defined as:

EO (R) = R
[

{Oo(R)}
o=1,...,O

. (1)

According to this definition, each element in EO (R) is equivalent
to R, with respect to the operators set O. Hence, identifying an
image U as equivalent to R consists in determining whether U ∈
EO (R).

The equivalence notion and the choice of operators are appli-
cation dependent. For example, O can contain all JPEG compres-
sions operators up to a certain quality factor, all scaling operators
in a certain range, and all possible combinations of both compres-
sion and scaling operators.

While the equivalence class notion, defined in (1), is useful,
its practical implementation is rather difficult. Suppose that U is
a modified version of R, then U can be identified as R only if
U ∈ EO (R). Hence, O should contain the operator transforming
R into U. On the one hand, it is unrealistic to include all possi-
ble operators in O. On the other hand, the cardinality |EO (R)|
is directly proportional to |O|, limiting the size of the latter. In
this paper, we propose an efficient method to implement the iden-
tification problem, as defined above, in a practical manner. That



is, the identification problem is tackled by building an equivalence
distance function eR (U), quantifying the equivalence between U

and R. This function depends on the targeted image R and the
operators set O.

3. PROPOSED METHOD

3.1. Feature Extraction and Distance Vector

Feature extraction is the operation that extracts visual information
from a given image. Many visual features can be envisioned: color,
texture, shape, etc. For an extensive survey on general features
extraction, refer to [6].

The features choice depends on the operators considered in
O. For instance, if rotation is considered, it would make sense to
choose features that are rotation invariant.

Let F be the number of features used. A distance vector
dR(I), I ∈ Ξ, can be defined as

dR(I) = [d1(I,R) · · · df (I,R) · · · dF (I,R)]T (2)

where df (·, ·) is a distance measure in the space defined by the
feature f .

Based on the above definition, the problem of identification of
equivalent images amounts to determining which distance vectors
dR(·) correspond to images in the equivalence class EO(R).

The distance vectors corresponding to images that are equiva-
lent to a given reference image R are concentrated near the origin
in the space defined by d1(·,R), . . . , dF (·,R), and denoted as
ΩR. Figure 1 illustrates ΩR in a two-dimensional example using
two simple features. The first feature is the gray level histogram.
The histogram is quantized into 16-bin. The corresponding dis-
tance metric is based on the histogram intersection algorithm [8].
The second feature is the first order statistics of each subband of
the Gabor transform. The transform is performed as in [5]. More
precisely, the parameters used are 0.75 for the upper center fre-
quency, 0.05 for the lower center frequency, five scales and six
orientations1. Hence, there is in all 30 subbands corresponding to
30 mean values. The corresponding distance metric is the L1-norm
of the difference between two vectors of mean values. In the fol-
lowing, each component of the distance vector is normalised by its
median. The latter is computed using the whole set of equivalent
images.

3.2. Equivalence distance function

Let denote by dR{EO(R)} the set of normalized distance vectors
for all the elements in EO(R). An image U is equivalent to R if
dR(U) is a member of the subspace spanned by dR{EO(R)}. To
quantify this membership, an orthotope (generalized rectangle) is
built in ΩR containing most of the elements in dR{EO(R)}. The
vertices of the orthotope are the origin2 and the following points:�

w1(R), . . . , 0
�
,
�
0, w2(R), . . . , 0

�
, . . . ,

�
0, . . . , wF (R)

�
where wf (R) > 0 is the orthotope limit associated with df (·,R).
The computation of these limits are detailed in Sec. 3.3.

Thus, an equivalence distance function can be defined as:

eR(U) = 1 − min
f=1,...,F

�
1 −

df (U,R)

wf (R)

�
. (3)

1Refer to [5] for more details about the parameters.
2corresponding to dR(R)
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Fig. 1. Illustration of ΩR in a two-dimensional space.

When df (U,R) is inside the orthotope, or in its border, then
eR(U) ≤ 1. Likewise, when df (U,R) is outside the orthotope
then eR(U) > 1. For equivalence values larger than 1, we assume
that the image U is not equivalent to the reference image R.

3.3. Orthotope Limits Computation

We consider a training set, denoted as TR = {T1, . . . ,TM}, con-
taining images that are equivalent to a given reference image R.
By computing the distance vectors between the elements in TR

and R, one obtains the set X = {x1, . . . ,xM} where xm =
dR(Tm).

The orthotope limits can be found by solving the following
constrained optimization problem:

min
w,ξmf

FX
f=1

wf + C ·

MX
m=1

FX
f=1

ξmf (4a)

subject to xm(f) ≤ wf + ξmf and ξmf , wf ≥ 0 (4b)

1 ≤ m ≤ M ; 1 ≤ f ≤ F

where w = {w1, . . . , wF }, wf = wf (R), xm(f) is the f th com-
ponent of xm, and ξmf is a positive slack variable which allows
for xm to be outside the orthotope [9]. Indeed, as it can be seen in
Fig. 2 the orthotope limits should be chosen so as to reject outliers.
However, the number of rejections should be limited. To achieve
this, the sum of the slack variables is penalized by a positive trade-
off constant C, which is determined through cross-validation (see
Sec. 4).

The optimization problem (4) can be solved by means of stan-
dard linear programming algorithms. Indeed, the problem can be
expressed in the Standard Form:

min
y

f
T
y (5a)

subject to Ay ≤ b and − y ≤ 0. (5b)

As an example, the matrix A and the vectors b, f and y are ex-
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Fig. 2. Outliers rejection.

(a) R1 (b) R2

(c) R3 (d) R4

Fig. 3. Reference images.

plicitly given (in the case where F = 2 and M = 3):

A = −

2666664 1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1

3777775
b = [x1(1) x2(1) x3(1) x1(2) x2(2) x3(2)]T

f = [1 1 C C C C C C]T

y = [w1 w2 ξ11 ξ21 ξ31 ξ12 ξ22 ξ32]
T

.

4. EXPERIMENTAL RESULTS

To test the proposed method, a set of four reference images was
chosen. They are denoted as R1, . . . ,R4 and depicted in Fig. 3.
These images are all 256 gray-level and of size 400× 300 pixels.

Basic operators Parameters
JPEG compression Q = 50, 60, 70
Gaussian noise addition σ = 2.5, 7.5
Resizing scale= 0.8, 1.2
Averaging filter order= 2, 3
Gamma correction γ = 0.8, 1.2
Horizontal flipping none

Table 1. Basic operators and their parameters.

The image operators are obtained by binary composition of the
12 basic operators in Tab. 1. Hence, the set O consists of the 118
possible binary compositions3, and the basic operators. The set Xr

contains the 130 distance vectors between the equivalent images in
EO(R) and Rr (for r = 1, . . . , 4). The distance vectors between
Rr and non-equivalent images are computed as well. The database
used for non-equivalent elements contains 536 images including
photographs of people, landscapes, and buildings.

In order to find the optimum value for the tradeoff constant Cr

in the optimization problem (4), a ten-fold cross-validation proce-
dure is carried out [1]. In this procedure, the set Xr is subdivided
into ten mutually exclusive subsets, and ten runs are carried out.
For each run, one set is put aside (validation set), and the ortho-
tope limits are estimated using the remaining sets. The union of
the latter is called the training set. For each reference image, its
orthotope is derived as explained in Sec. 3.3.

Figure 3 reports the average false-positive and false-negative
errors for each reference image and ten values of Cr sampled in
[0.1, 2]. The false-positive error, with respect to a reference image
Rr , corresponds to the fraction of non-equivalent images whose
distance vectors fall inside the Rr orthotope; it corresponds to
non-equivalent images detected as equivalent images by the sys-
tem. The false-negative error corresponds to the average fraction
of equivalent images, in the validation set, falling outside the R

orthotope; it corresponds to equivalent images detected as non-
equivalent images by the system. Moreover, the average fraction
of equivalent images, in the training set, falling outside the ortho-
tope is also reported (false-negative training).

As it can be seen in Fig. 4, the false-negative error decreases
with Cr , until it reaches a certain threshold value from which it re-
mains mostly constant. A similar behavior can be observed for the
false-negative training. On the contrary, the average false-positive
error increases with Cr . Depending on the application, it might
be undesirable to have a large false-positive error. In this case, Cr

need to be smaller than the threshold.
For illustration purpose, we choose C1, C2, C3 and C4 to be

equal to 0.7 because the false-negative error decreasing rate slows
beyond that value. Moreover, it permits to keep a relatively low
false-positive rate. The orthotopes limits, for this tradeoff value,
are shown in Fig. 5.

5. CONCLUSIONS AND FUTURE WORK

This paper reports an original approach for image identification
based on equivalence classes. Equivalence of a reference image is
defined as all admissible variations of that image when subjected
to a set of operators. The approach is based on the construction of

3there is no composition between operators with the same nature. For
instance, the composition of two JPEG compression operators with differ-
ent quality factor is not considered.
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Fig. 4. Average false-positive and false-negative errors.
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Fig. 5. Orthotope limits (C = 0.7).

an orthotope in the space of features distance vectors. The limits of
the orthotope are computed using a standard linear programming
approach. Simulation results to identify four specific images and
their 130 equivalent images out of a total of 536 non-equivalent
images, and their variations, show promising results.

As a future work, we will take into account the distribution of
non-equivalent images to define the equivalence distance function
‘shape’. Moreover, a study on the sensitivity of the method with
respect to choices of features and distance metrics might provide
several usefull insights into the relative importance of each feature.
This will pave the way to a scheme based on automatic feature
selections.
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