
 
PERFORMANCE OF A SCALABLE BITSTREAM ADAPTATION PROCESS BASED ON 

HIGH LEVEL XML DESCRIPTIONS 
 

Davy De Schrijver, Wim Van Lancker, and Rik Van de Walle 
 

Ghent University – IBBT, Department of Electronics and Information Systems – Multimedia Lab, 
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium. 

e-mail:{davy.deschrijver;wim.vanlancker;rik.vandewalle}@ugent.be 
 

ABSTRACT 
 
Multi-channel publication environments are necessary in 
our future universal multimedia access world. Therefore, 
we must adapt our digital video content taking the 
restrictions and characteristics of networks and terminals 
into consideration. To make the adaptation possible in a 
flexible manner, we use a scalable bitstream which gives 
us the possibility to extract new bitstreams with other 
characteristics without the need of a complete decode-
encode step. The adaptation must happen in a format-
agnostic way and terminal-independent. To realize this 
goal, we describe our bitstream in XML by using the 
MPEG-21 BSDL standard. The adaptation is done in the 
XML domain instead of on the bitstream. The generation 
of the description and the new bitstream can take place 
automatically. In this paper, we describe the adaptation of 
a bitstream by using a description and the performance of 
this approach of adaptation. 

 

1. INTRODUCTION 
 
Nowadays, video plays an important role in our society 
(television, DVD, internet…) and will be more important 
in the future (thinking of possibilities of PDA, GSM…). 
Every video sequence must be encoded to make it 
possible to transport the video over a network, for 
example, digital television contains MPEG-2 encoded 
video sequences. The increasing amount of possible 
devices leads to a universal multimedia access where we 
want to create the content once and publish it on every 
possible device [1].  

To publish the content on different devices and over 
different networks, containing dissimilar characteristics, 
the original (encoded) bitstream must be adapted. The 
adaptation can be done directly on the bitstream itself but 
in this paper, we will use a different approach. We 
describe the syntax of the bitstream in XML and do the 
adaptation in the XML domain. This gives us the 
opportunity to add extra information (metadata) to the 
(XML) description about the video sequence such as shot 

detection, semantic meaning of a scene… and to perform 
the adaptation based on the metadata.  

The outline of the paper is as follows. First in 
section 2, we briefly discuss the generation of a bitstream 
description. Next in section 3, we explain a mathematical 
model, which predicts the generation time of an adapted 
bitstream. In section 4, we investigate the possible 
solutions for the XML transformations in the context of 
BSDL. The results of our experiments are summarized in 
section 5. Finally, section 6 concludes the paper. 
 

2. HIGH-LEVEL DESCRIPTION OF A  
SCALABLE BITSTREAM 

 
To enable the publication of content on heterogeneous 
devices utilizing different network characteristics, it is 
impractical to create content for every possible client 
configuration (such as screen resolution, bandwidth…). 
Therefore, we need a scalable bitstream, which gives us 
the possibility to keep only one parent bitstream and filter 
out different versions of the bitstream taken the enforced 
constraints into account.  

Therefore, we have chosen to encode our video with 
the MC_EZBC algorithm [2]. This codec is wavelet-
based and embedded scalable in quality, resolution and 
frame rate. To obtain these kinds of scalability, the codec 
uses a t+2D wavelet transform. This kind of codec 
consists of three phases (in contrast to the traditional two-
step, encode-decode codecs). During the first phase, the 
codec encodes the video sequence and generates a near-
lossless bitstream. From this bitstream, it is possible to 
extract other versions of the original bitstream during the 
second phase. These versions will have other 
characteristics like lower frame or bit rate. The last phase 
is typically the decode step of a bitstream.  

Another important issue for this paper is that the 
adaptation could take place in every node of the delivery 
chain such as on the server; in a gateway or in an active 
router. Therefore, we need a universal adaptation 
engine and we will use the Digital Item Adaptation (DIA, 
[3]) part of the MPEG-21 framework [4]. To make the 
adaptation process format-agnostic (or format-
independent), we describe the bitstream structure on a 



 

Figure 1: BSDL Workflow 

higher level in XML (Extensible Markup Language) 
using BSDL (Bitstream Syntax Description Language, 
[5]) which is a part of DIA. BSDL is a language that is 
based on the W3C XML Schema language with some 
extensions to and restrictions on the W3C standard. In 
Figure 1, we see the workflow of the BSDL language. In 
this figure, we generate an XML description of a 
bitstream by using the BintoBSD tool. The original 
bitstream is embedded scalable and a BSDL schema 
represents the structure or syntax of the encoded 
bitstream. The generation can be done automatically. On 
these descriptions, a transformation can be executed to 
obtain the adapted descriptions. The transformation can 
be done by using an XSLT stylesheet, DOM or SAX 
parser. The transformation is the XML-equivalent 
adaptation step of the original bitstream. The last step in 
the BSDL workflow is the generation of the adapted 
bitstream from the adapted bitstream description. To 
make this generation possible in an automated way, we 
need the description together with the BSDL schema and 
the original bitstream. The BSDL schema is necessary to 
understand the syntactical meaning of the different tags in 
the description and the original bitstream is required 
during this process because the description contains 
references to this bitstream.   

To make this approach practically usable, it is 
necessary to perform the adaptation of the description 
together with the generation of the (adapted) bitstream in 
real time. In the following sections, we will discuss the 
performance of the different steps. 

 
3. MATHEMATICAL MODEL OF THE  

BITSTREAM GENERATION 
 
The last step in the BSDL approach is the generation of 
the new bitstream from a description. The first place to 
adapt the bitstream is in most cases the (content) server 
because the (original) parent near-lossless bitstream will 
be too big to send over a network. So, it is necessary to 
predict the execution time of the BSDtoBin tool to avoid 

server overloading. A mathematical model can be used as 
predictor of the execution time.   

In Figure 2, we see the general structure of a 
bitstream description that is used as input document for 
the BSDtoBin tool. We must remark that the header and 
subband elements contain metadata about the bit planes 
of the encoded sequence. This is necessary to make the 
SNR scalability possible and is not encapsulated in the 
bitstream. The bitstream generator (BSDtoBin tool) must 
parse that kind of descriptions and the execution time of 
the generation depends on the sequence characteristics 
(such as number of frames, length of GOP structures, 
frame resolution…) and terminal properties (such as CPU 
speed, hard disk, available memory…). Our model must 
be sequence and terminal independent so that it is usable 
on every possible device and for every (MC_EZBC 
encoded) video sequence. In our model, the terminal 
characteristics are called the parameters of the model and 
the sequence properties are called the variables.  
Suppose, as parameters:  

and as variables: 

then the model is: 

bitplanesofnumberd
structuresGOPofnumberc

levelsspatialofnumberb
levelstemporalofnumbera

=
=
=
=

metadatatheparsetotimey
headerGOPaparsetotimex

vectormotionaparsetotimew
subbandaparsetotimev

timestartupconstantu

=
=
=
=
=

Figure 2: Structure of a bitstream description 

( )∑
=

+∑
−

≠
++++=

+∑
=

∑
−

=
++=

+∑
=

+=

++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

c

s
IO

a

r r
subbands

r
MV

s

levelcontxu

IO
c

s

a

r sr
levelcontent

s
GOPHeaderu

IO
c

s s
GOPparseu

IOBSDparseutimeexecutionTotal

1

1

00

1

1

0

1
)(



( ) ( )( )
( ) ( )( ) IO

a

r
dyvbrwdyvbxcu

IO
c

s

a

r
dyvbrwdyvbxu

+∑
−

≠
++−++++=

+∑
=

∑
−

≠
++−++++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

0

12

1

1

0

12

To predict the execution time of the BSDtoBin tool, we 
must evaluate the above model. The parameters can be 
filled in once we know the sequence and the variables are 
constant values for every terminal. To obtain these 
values, we determine the constants during the installation 
phase of the software by using specific formulated 
descriptions, for example a description with only motion 
vector information.  
 

4. ADAPTATION PROCESS 
 

The goal of BSDL is to generate adapted bitstreams 
without manipulating the bits of the bitstream themselves. 
Every bitstream is embedded temporal, spatial and quality 
scalable. These kinds of scalability must be exploited in 
the XML domain by simple editing operations.  

The first type of scalability is a temporal reduction 
by a power of two. To obtain that kind of adapted 
descriptions, we must eliminate the highest content levels 
of each GOP in Figure 2. The second transformation 
executes the spatial transformation. Therefore, we must 
delete the highest subbands of each content level. Finally, 
the SNR scalability cannot be performed by using the 
information contained in the bitstream, as we can see in 
Figure 2. During the SNR transformation, we must 
truncate every subband in such a manner that we respect 
the given global bit rate and that the quality is constant 
and as high as possible. We need information about the 
composition of the different subbands, in particular the 
number and the length of the different bit planes that a 
subband contains. The extra information about the bit 
planes is the encapsulated metadata as used in section 3. 
Based on general metadata (contained in the header tag), 
we can calculate the bit plane where we must truncate the 
subbands. Once we know this bit plane, we need the 
subband-specific metadata (contained in the subband tags 

of Figure 2) to know the length of the bit plane in the 
current subband and where to prune the subband.  

How to implement these transformations is not 
standardized in the MPEG-21 DIA standard. The decision 
lies in the hands of the adaptation engine implementer. 
We have compared different possible technologies qua 
performance in execution time and memory consumption. 
We have implemented the different transformations in 
XSLT, Java and C++ by using a DOM and SAX library.  

To perform the measurements, we have run every 
transformation in every technology 5 times and calculated 
the average over the 5 runs. The measurements were done 
on a PC having an Intel Pentium IV CPU, clocked at 
2.8GHz with Hyper-Threading and having 1GB of RAM 
at its disposal. The used operating system was Windows 
XP Pro (service pack 2) and Sun Microsystems's Java 2 
Runtime Environment (Standard Edition version 
1.4.2_04) was running as JVM.  

 
5. EXPERIMENTAL RESULTS 

 
First, we discuss the performance of the transformation 
implementations. We could give an overview for the three 
scalabilities, but in this paper, we only discuss the 
temporal transformation by a reduction of two temporal 
levels. The same conclusions of analysis can be 
conducted for the other transformations. In Table 1, we 
give an overview of the measurements for different 
sequences and implementations. We have selected six 
sequences with different lengths and resolutions as 
reflected in the table. During the encode phase, we have 
used GOP structures of 16 frames. In this table, we see 
that XSLT is completely unusable as transformation 
engine in the context of bitstream description adaptation. 
The difference between a Java and C++ implementation 
by using a DOM library is significant; the origin of the 
difference lies in the fact that Java needs more time to 
construct the internal DOM tree in memory and to 
serialize the tree to a file. The transformation of the 
(internal) tree is equally fast in both situations. Finally, 
we see that the difference between the SAX 
implementation in Java and C++ is smaller than in case of 
the DOM implementation. 

Sequence # frames resolution Size bitstream 
(KB) 

XSLT 
(s) 

Java – 
DOM (s) 

Java – 
SAX (s) 

C++ - 
DOM (s) 

C++ - 
SAX (s) 

Seq 1 40 352 x 240 2425 155.7 1.8 0.6 0.5 0.4 
Seq 2 121 352 x 288 6474 844.0 4.8 1.6 1.4 1.0 
Seq 3 300 352 x 288 14358 2023.0 8.7 3.5 2.8 2.3 
Seq 4 541 352 x 240 33349 > 2100.0 12.7 4.8 4.4 3.2 
Seq 5 528 1280 x 720 115174 > 2100.0 13.7 6.7 5.1 3.9 
Seq 6 529 1280 x 720 188282 > 2100.0 13.8 6.7 5.1 3.9 

Table 1: Performance of the temporal transformation by using different technologies 



Another measurement is the memory consumption 
during the transformation. For DOM-based 
implementations, we need 180MB for the last three 
sequences and only 2MB for the SAX-based approach. 
The longer the sequence, the more memory we need for 
the construction of the internal DOM tree. In contrast 
with SAX, where we always need 2 MB independent of 
the length of the sequence. Therefore, we can conclude 
that a SAX-based implementation is the only usable 
technique for a description transformation when the 
sequences are considerably long.  

Secondly, we have measured the performance of the 
BSDtoBin tool. During the execution of the application, 
we noticed that the time that was spent on I/O was 
significant. Therefore, we have calculated the time that 
was spent on parsing and on I/O by using our model of 
section 3. For each tested description, we have executed 
two runs immediately after each other without closing the 
application. The results of the second run are the most 
important because the JIT-compiler of JVM has done his 
work and all the classes are loaded in the memory. In a 
use case, the BSDtoBin application on a server will never 
close and will be waiting on new requests while the 
(compiled) classes are still in the memory.  

In table 2, we see the results of the BSDtoBin tool 
during the 1st and 2nd run. The difference between the 
two execution times is in all situations approximately 0.5s 
(the time to load and compile most classes and to 
construct an internal DOM tree of the BSDL schema).  
Further in the table, we see that the time spent on I/O is 
high for the high definition sequences. Finally, we have 
measured the execution time of a transformed description 
because these descriptions will be used in a real use case. 

When we combine the results from table 1 and table 
2, we see that the transformation of the description and 
generation of the adapted bitstream is possible in real 
time. So, we can use BSDL in streaming use cases.  

 
6. CONCLUSIONS 

 
In this paper, we have discussed how we can adapt 
scalable bitstreams by using XML descriptions. To realize 

this aim, we have used the MPEG-21 BSDL standard. 
The adaptation step in the XML domain is a 
transformation of an XML document. We have seen that 
the usage of a SAX parser is the only acceptable solution 
for the transformation of a bitstream description. To 
handle multiple requests, we must know the execution 
time of the bitstream generator (BSDtoBin). Therefore, 
we have formulated a mathematical model and by using 
this model, we have seen that the generation of a new 
bitstream can be done in real time. 
 

7. ACKNOWLEDGMENTS 
 
The research activities that have been described in this 
paper were funded by Ghent University, the 
Interdisciplinary Institute for Broadband Technology 
(IBBT), the Institute for the Promotion of Innovation by 
Science and Technology in Flanders (IWT), the Fund for 
Scientific Research-Flanders (FWO-Flanders), the 
Belgian Federal Office for Scientific, Technical and 
Cultural Affairs (OSTC), and the European Union. 
 

8. REFERENCES 
 
[1] A.Vetro, C. Christopoulos, T. Ebrahimi “Universal 
Multimedia Access”, IEEE Signal Processing magazine, 
20 (2) 16-16, March 2003 

[2] P.Chen, J.W. Woods, “Fully Scalable Subband / 
Wavelet Coding”,Rensselaer Polytechnic Institute, Troy 
New York, May 2003 

[3] Moving Picture Experts Group, “Text of ISO/IEC 
21000-7 FCD – Part 7: Digital Item Adaptation,” 
ISO/IEC JTC1/SC29/WG11 N5845, July 2003 

[4] I. Burnett, R. Van de Walle, K. Hill, J. Bormans, and 
F. Pereira “MPEG-21: Goals and Achievements”, IEEE 
Multimedia, IEEE Computer Society, pp. 60-70, 2003 

[5] Myriam Amielh, Sylvain Devillers, “Bitstream 
Syntax Description Language: Application of XML-
Schema to Multimedia Content Adaptation,” WWW2002, 
May 2002 

2nd run Sequence Size Bitstream 
(KB) 

1st run (s) 
Parsing time (s) I/O time (s) Total time (s) 

Seq 1 2425 0.70 0.25 0.03 0.28 
Seq 2 6474 1.36 0.87 0.02 0.89 
Seq 3 14358 2.53 1.97 0.03 2.00 
Seq 4 33349 3.67 2.74 0.26 3.00 
Seq 5 115174 6.93 3.00 3.45 6.45
Seq 6 188282 10.28 3.09 6.71 9.80
Seq 6 after 
temporal reduction 

67675 5.03 1.89 2.58 4.47 

Table 2: Performance of the BSDtoBin tool 


	Index
	Conference Info
	Welcome Message
	Venue
	Sponsors
	Committees

	Sessions
	Wednesday, 13 April, 2005
	WedAmOR1-Special Session on Video Surveillance I
	WedAmOR2-Special Session on Semantic Multimodal Analysi ...
	WedAmOR3-Special Session on Video Surveillance II
	WedAmOR4-Special Session on Semantic Multimodal Analysi ...
	WedPmOR1-Special Session on Semantic Multimedia Analysi ...
	WedPmOR2-Face Detection and Recognition I
	WedPmOR3-Special Session on Semantic Multimedia Analysi ...
	WedPmPO1-Posters I

	Thursday, 14 April, 2005
	ThuAmOR1-Video Coding and Transmission
	ThuAmOR2-Audio-Visual Processing
	ThuAmOR3-Special Session on Mixed and Augmented Reality
	ThuAmOR4-Special Session on Real-Time Object Tracking:  ...
	ThuPmOR1-Special Session on Universal Multimedia Access ...
	ThuPmOR2-Special Session on Media Security
	ThuPmPO1-Posters II
	ThuPmOR3-Face Detection and Recognition II

	Friday, 15 April, 2005
	FriAmOR1-Search and Retrieval
	FriAmOR2-Analysis and Classification I
	FriAmOR3-Special Session on Personalised Knowledge Syst ...
	FriAmOR4-Watermarking
	FriPmOR1-Special Session on 3D Reconstruction and Rende ...
	FriPmOR2-Analysis and Classification II
	FriPmOR3-Special Session on 3D Reconstruction and Rende ...
	FriPmPO1-Posters III


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	Ó
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Multimedia content analysis and understanding
	Content generation and manipulation
	Content-based browsing, indexing and retrieval of image ...
	2D/3D feature extraction
	Advanced descriptors and similarity metrics for audio a ...
	Relevance feedback and learning systems
	Supervised and unsupervised segmentation of objects in  ...
	Identification and tracking of regions in scenes
	Voice/audio assisted video segmentation
	Analysis for coding efficiency and increased error resi ...
	Analysis and understanding tools for content adaptation
	Multimedia content adaptation tools, transcodingand tra ...
	Content summarization and personalization strategies
	Data hiding and copyright protection of multimedia cont ...
	Semantic mapping and ontologies
	Multimedia analysis for advanced applications
	Multimedia analysis for surveillance, broadcasting, mob ...
	Knowledge-Assisted Multimedia Analysis
	Semantic Web and Multimedia

	Search
	Help
	Browsing The Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations And Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Rik Van de Walle
	Wim Van Lancker
	Davy De Schrijver



