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ABSTRACT

Automated videosurveillance for homeland security is a
very hot topic today. Commercial systems are emerging
but the configuration setup time and installation cost are
still major issues. These systems usually detect
unexpected or unauthorised events in a visual scene (e.g.
unattended object, human motion) and then trigger alarms
or record forensic video data and metadata in tamperproof
databases. Currently, the configuration phase requires the
intervention of experts for encoding precisely how the
system has to work. In our approach we propose new
functional capabilities for intelligent video-surveillance
systems to learn events of interest from a base of
representative examples. Such cognitive vision systems
are based on basic capabilities like object detection,
characterisation and tracking for low-level (image
processing) and high-level (semantic) event recognition.
We show how this semantic domain is useful to generalise
the recognition. With this goal in mind, a performance
evaluation of the system is performed and validated on
test sequences including CAVIAR.

1. INTRODUCTION

Homeland security using automated systems is what users
want. Videosurveillance is one market where automatic
systems are becoming a reality. Examples of challenging
applications [1] are monitoring metro stations [2] or
detecting highways traffic jams as well as detecting
loitering. Actually, an important disadvantage of such a
system is the cost of the configuration step because it
requires the intervention of experts for encoding precisely
how the system has to work. In our approach we propose
new functional capabilities for intelligent video-
surveillance systems to learn events of interest from a
base of representative examples.

The work reported here uses the platform we
defined in [3]. Such a system must, for example, include
evaluation facilities, such as [4]. We report here an
evaluation of the system for a wide range of sequences
including CAVIAR [5] sequences.

The paper is organized as follows: section 2

describes the global system and its main characteristics;
section 3 goes deeper in the understanding of the learning
process of the vision system. Section 4 is devoted to
performance evaluation of the system and section 5
concludes and indicates future work.

2. SYSTEM OVERVIEW

The global modular architecture system [3][6] is
composed of heterogeneous computers and cameras
connected together through a network (see Figure 1). A
human computer interface and a storage device are also
plugged onto this system. In order to test and benchmark
our algorithm on particular recorded sequences, a general
video stream player was added.
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Figure 1. Global modular architecture.

2.1. Vision system description

The architecture of the vision part of the system is divided

in three main levels of computation that achieve the

interpretation (see Figure 2):

1. Image level (image filtering, background evaluation
and segmentation)

2. Blob level (description, blobs filtering, matching,
tracking description and filtering)

3. Event level (tracking analysis,
extraction and scenarios detection)

sub-scenarios



We will not go deeper in the explanation of the
segmentation and tracking algorithm as it was described
in [3]. It is a typical bottom-up approach.
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Figure 2. Design of the vision system components.

The output of the tracking blob level is a
description of historical behaviours of blobs in the scene
(see Figure 3). After sub-scenarios extraction, the
description is in XML (see Figure 4).
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Figure 3. Historical behaviour of blobs in the scene.

<?xml version="1.0" encoding="UTF-8"?>
<event_history>
<event>
<time>t3</time>
<name>appearance</name>
</event>
<event>
<time>t4</time>
<name>Split</name>
</event>
<event>
<time>t6</time>
<name>Merge</name>
</event>
<event>
<time>t7</time>
<name>Merge-Split</name>
</event>
</event_history>

Figure 4. Description in sub-scenarios of scene
chronological account.

3. LEARNING

We propose a new functional capability for our intelligent
video-surveillance system to learn events of interest from
a set of representative examples (see Figure 5). The basic
idea is to use the Bayesian classification like in [7]. Let E
be the evidence and H the hypothesis. Equation (1) is the
rule to infer & knowing e. h is the expected scenario
detection and e is the sub-scenario extraction.

P(H=h|E=e)=P(E:eLfl(;i)j(H:h) (1)

We employ the maximum a posteriori
probability (MAP) selection rules [8]. When a feature e is
received, the MAP system computes the a posteriori
probabilities of P(hle) and chooses h if P(hle)>0.5. From
the set of representative examples, one can run the vision
system description module (section 2) and compute the
probability density function of P(E) with all the sub-
scenario extractions e.

3.1. Ground truth

The set of representative examples is composed of pairs
of video sequences and expected results, known as ground
truth. In our case, this ground truth is described in XML
as shown in Figure 5. The structure of the ground truth is
quite similar to the one of the blob description. With the
ground truth, the probability density function of P(H) can
be directly computed.

<?xml version="1.0" encoding="UTF-8"7>
<event_history>
<event>
<time>2003/08/08 @17:35:12.520000</time>
<name>person_entering</name>
</event>
<event>
<time>2003/08/08 @17:35:14.480000</time>
<name>unattended_object</name>
</event>
<event>
<time>2003/08/08 @17:35:17.080000</time>
<name>person_leaving</name>
</event>
</event_history>

Figure 5. Typical ground truth of the representative
learning base.

3.2. Matching
It is possible to match the description in sub-scenarios E

with the high level description of the ground truth. But
several matches are possible. The bigger the time window,



the more the number of matches. We have decided to set
the window to 5 seconds around the ground truth event.
An example of matching is shown below. We match the
ground truth room2_00039.gt.events.xml with the sub-scenarios
results room2_00039.events.xml. There are 4 matches:

Ground truth Sub-scenarios result

name: S-St, time:
11:09:31.68

name: S-D, time: 11:09:31.68
name: St-D, time:11:09:31.89
name: D-, time: 11:09:32.89

name: unattended_object,
time 11:09:29.42

time

With all these matches one can easily construct the
probability density function of p(EIH) event by event.
Here the matching will increase the conditional
probabilities p(S-Stlunattended_object), p(S-DI
unattended_object), p(St-Dlunattended_object), p(D-I
unattended_object).

4. EVALUATION

In public facilities such as airports, there is a risk of
terrorist attack by abandoning a bag or an object
containing a bomb. Detection in such a situation without
delay might permit to avoid a disaster. We will evaluate
the performance of our system with the case study of
automatic detection of such unattended objects.

4.1. Rationale

For objective performance evaluation we should define a
dataset of sequences for learning, a dataset of sequences
for testing and a metric to quantify the quality of the
results. All sequences are downsized to 384x288 grey 5
fps and are acquired from fixed cameras. Table 1 defines
the datasets. Sometimes, several people are on the scene.
The ground truth has been made by hand and the structure
is already defined in Figure 4. One can remark that the
CAVIAR sequences are only used for testing the
generalisation of the learning from other sequences.

The performance evaluation compares the result
from the system and the ground truth. We use the metric
described in [9] to characterize the successes and failures
of the algorithm. Tables 2 and 3 remind the scoring
process where N, is the number of observations
confirmed by the ground truth. Ny, is the number of
observations not matched in the ground truth. Ny, is the
number of observations erroneously accepted as
belonging to the ground truth. N, is the number of

observations rejected as belonging to the ground truth.

4.2. Learning

The learning process gives

ul

p(h="unattended_object

e="S§-ST”)>0.5. For the other features, the probability is
below 0.5. Thus, the benchmarking process will only

assign as “unattended_object”
“S-St” occurs.

events when a sub-scenario

One can note that “S-St” represents the

scenario of a blob splitting followed by a blob stopping.

“Multitel_testl”, 29
sequences, 22 unattended

“Sas_cam?2”, 43
sequences, 4 unattended

objets, Ir=15, ts=14

“Multitel_outside™, 30
sequences, 2 unattended
objects, [r=15, ts=15

objects, [r=30, ts=13

Caviarl[5], 4 sequences, 4
unattended objects, /r=0,
ts=4

x

Table 1. Description of datasets. Ir is for the number of

sequences used for learning process, ts is for the number
of sequences for the testing process.

Ground truth
System o .
Observation Positive Negative
Positive Ny (true positives) Ny, (false positives)
Negative | Ny, (false negatives) =N, (true negatives)

Table 2. Boolean contingency table.



Name Expression
Detection rate (sensitivity) Nip/(Np+Niy)
False positive rate Nip/(Ng+Nin)

Table 3. Basic values for benchmarking.
4.2. Results
Table 5 shows a detection rate of 72% and a false positive

rate of less than 1%. This means that less than 1% of the
negative event frame trigger a false alarm.

Ground truth
Number of event frames Positive Negative
14538 18 14520

Table 4. Description of ground truth of sequences.

Ground truth System observation

Nb

. False False True | Detec

event | Posi- | Nega- g .. o .
frames | tive tive positive | positive | positive | -tion
Ns rate Ny rate
14538 18 | 14520 20 <1% 13 72%

Table 5. Results of the experimentation.

Despite the impression of good results, the quality of the
system could be highly improved. This false positive rate
(by frame) is still quite high. The results for the CAVIAR
sequences show a detection rate of 50% that shows the
results of generalisation for this event (unattended object).

After study, we discover that the problems are mainly
coming from the segmentation of mobile objects and are
then propagated along other processes (tracking and the
sub-scenario detection).

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an original approach for
an automatic video surveillance platform that can learn
events of interest. We have focused our attention to the
vision system and demonstrated its capacity for automatic
unattended object detection.

The results are quite interesting and show the relative
ability to generalise learning to new sequences. We need
to test other events different from « unattended object »
that involve several people like « people fighting ».

Future work will aim at increasing the performance by
overcoming different aspects of the system as

segmentation, tracking but also by improving the learning.
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