

SYNTHETIC-NATURAL CAMERA FOR DISTRIBUTED IMMERSIVE ENVIRONMENTS

 K r y s t i a n I g n a s i a k , M a r c i n M o r g o ś , W ł a d y s ł a w S k a r b e k

Multimedia Laboratory, Institute of Radioelectronics, Warsaw University of Technology

ABSTRACT

The concept of synthetic-natural hybrid (SNH) camera

and microphone is used to design fully immersive

environments with SNH scene distributed among distant

locations in a network. SNH camera and microphone in

natural way integrate three algorithmic aspects in such

software design: audio visual (AV) scene view generating,

view rendering and view controlling by user. At user

terminal SNH camera and microphone is implemented by

RendGen (rendering and generating) application which is

a client of the specific immersive application server

SNHgen, synchronizing views and events in the whole

system. RendGen application is actually a collection of

plug-ins which could be either general or specific to the

particular location, too. A software methodology is

developed to define SNHgen servers and integrate plug-

ins with RendGen clients. Our approach is illustrated on

the basis of virtual classroom application.

1. INTRODUCTION

Immersive environments become gradually important

multimedia paradigm used in advanced applications such

as distance surgery, virtual classroom, virtual museum

tours, 3D games, etc.

Fully immersive environments not only integrate synthetic

data (3D graphics) with natural audio-video (AV) streams

but deal as well with interactive aspects in local (always)

and in networked (frequently) circumstances.

The synthetic-natural, i.e. hybrid (SNH) scenes in which

users are immersed at rendering add new challenges for

software design especially in networked case. Besides

classical AV synchronization problem we encounter

rendering complexity and interactivity coordination

problems.

Rendering time complexity is reduced significantly by

using Open-GL graphics cards with advanced extensions.

However, additional dimension for rendering complexity

is added when source data used to build the immersive

scene is of various modality, e.g. image based rendering

versus classical 3D graphics rendering based on triangle

meshes and associated textures. When SNH scene has

different parts with such different rendering modalities,

the integration of them at the rendering engine creates

several technical problems, especially if different

rendering parts are developed by different programming

teams.

In section 2 we show how the concept of synthetic-natural

hybrid (SNH) camera and microphone is used to design a

software platform for fully immersive environments with

SNH scene distributed among distant locations in a

network. Namely, the coherent client server architecture is

presented. Section 3 defines functionalities for selected

software modules (plug-ins) developed in the system

while section 4 illustrates the approach in a virtual

classroom application.

2. SOFTWARE ARCHITECTURE

SNH camera and microphone in natural way integrate

three algorithmic aspects in software design for immersive

environments: SNH AV scene view generating, view

rendering and view controlling by user. At user terminal

SNH camera and microphone is implemented by

RendGen (rendering and generating) application which is

a client of the specific immersive application server

SNHgen, synchronizing views and events in the whole

system. RendGen application is actually a collection of

plug-ins which could be either general or specific to the

particular location, too.

In order to create a software platform for immersive

environments we defined the software architecture which

is illustrated in Figure 1.

The main element of this architecture is HybridGenerator

which is implemented in HybridGenerator C++ class. The

HybridGenerator: provides clients with the scene

description and animation of the scene, manages events

within the application, manages the interaction within the

scene (between users, between objects and between users

and objects), provides the programmer with network

communication methods and a uniform way of event

management.

Location

Location

LocationLocation

Location

Location

Location

Location

Location

Hybrid Generator

(server)

co
n
tro

l sig
n
a
ls,

e
ven

ts

Hybrid

Scene

Hybrid

Camera

using

RendGen (client)

Renderer Generator

MicrophoneCamera

scen
e g

eo
m
etry

(O
p
en

G
L *)

g
en

erate

AV streams

AV stre
am

Figure 1 Architecture of rendering engine.

The HybridGenerator acts as the server for RendGen

client application which is the universal browser for the

end user. RendGen (Renderer-Generator) consists of

two modules:

1. renderer – it displays the scene in a viewport;

renderer asks HybridGenerator to send the

scene geometry as a list of OpenGL commands

to be executed in a client application; renderer

combines the scene geometry together with

other signals (e.g. live video) coming from

other locations;

2. generator – it manages data sources available

at the client side, e.g. video cameras, and sends

the signals to different locations, like other

RendGens, so that it participates in generating

the whole scene by HybridGenerator.

The knowledge of how to combine the scene geometry

together with live AV streams from other locations is

managed by the HybridGenerator.

3. SELECTED PLUG-INS DESCRIPTION

There are twelve plugins available in this version of

Rendering API: Viewport, AVPlayer, Capture,

ImageLoader, MemBufManager, Model3DLoader,

MulticastSender, MulticastReceiver, ScreenCapture,

TextTerminal, VideoCompressor, VideoDecompressor.

The functionality for selected plug-ins is as follows:

1. Viewport. Hybrid Generators use this plugin

for displaying 2D/3D graphics, animations of

the whole scene, which are based on OpenGL.

Viewport plugin creates OpenGL MDI child

window in the client area of RendGen

application window. So far the subset of 46

OpenGL commands has been implemented.

These commands are chosen to cover some of

the most typical OpenGL operations on 2D/3D

graphics.

2. AVPlayer. Provides application with an easy

programming interface to use AVI movie files

in a composed scene and to display them within

Viewport plugin window (e.g. as the “texture”

of 3D object). This plugin creates an

ImageResource and fills this resource with

current data from the movie file. The resource

is available for any other plugins running within

RendGen.

3. Capture. Provides application with an ability

to obtain video streams from any capture

device registered at the operating system level.

Such a video stream can be used as a “texture”

for objects or a background for the scene. The

captured data, i.e. the created resource, is

available for any other plugin running within

RendGen.

4. ImageLoader. Loads given file resource (of

type IMAGE) into memory and creates

ImageResource, which is then available for

other plugins. Only Windows BMP image file

format is supported so far.

5. MemBufManager. Memory Buffer Manager –

the function of this plugin is to manage shared

memory. The memory can be shared between

other plugins and remotely between plugins and

HybridGenerator. This plugin is mainly

provided for transferring large OpenGL data

sets, like vertices, indices, colors, normals,

buffers, and any other data the application deals

with.

6. TextTerminal. The plugin provides an easy

and flexible bi-directional text communication

mechanism between user and HybridGenerator.

It may also be used to provide users with text

chat functions. This plugin creates MDI child

window in the client area of RendGen.

The communication between elements of system relies

on events handling. Events are sent from a plugin to

HybridGenerator, from one plugin to another plugin, etc.

in both directions.

Applications created with the proposed Rendering

API may use standard, universal plugins as well as

specific ones, created only for the particular task and

application. Those plugins are created by subclassing the

RendGenPlugin C++ class. In order to do that, several

methods of this class need to be implemented such as:

createInstance, onEvent, onShow, closePlugin, isClosed.

The plugin communicates with RendGen application,

other plugins and HybridGenerator using the same

uniform event management mechanism (for instance

with sendEvent and onEvent methods), used by

RendGen to communicate with remote HybridGenerator.

Plugin may also share and exchange some data with

other plugins in the form of various Resource objects.

Plugins have access to the methods of RendGen

application that are provided to control and synchronize

usage of resources shared between plugins.

4. VIRTUAL CLASSROOM APPLICATION

Virtual classroom application was chosen as a main test

application for Rendering API for Immersive

Environments, since it combines all types of possible

interaction within the scene, as well as main features of

immersive environment. These features are necessary to

provide the user with high level of realism, e.g.

combining a real video stream with artificial objects at a

variable level of virtual and artificial world presence.

Figure 2 Screenshot of virtual classroom GUI

for teacher user role.

Virtual classroom presented to the user contains

various 3D object such as blackboard, desks, computers,

monitors as well as 3D models of teacher and other

students. The teacher’s interface of virtual classroom

application, has an option to capture video stream from

output of any application (or the whole desktop) running

on the same computer (MS Excel, PowerPoint, Paint for

instance). Additionally teacher’s interface provides an

opportunity to capture video signal from any capture

device (and video camera) available in the operating

system (see Figure 2). Those video streams are

compressed, transmitted through network using

multicast protocol, and finally rendered on the virtual

blackboard or virtual monitor’s screens, so that any

student in the same virtual classroom can see them.

Figure 3 Screenshot of virtual classroom GUI

for student user role.

Users, that means teacher and students, can look

around and move in this virtual environment. The

specific attribute of this application is that video streams

are the most important part of the presentation layer,

because they carry on the essence and the content of so

called virtual lesson. The other elements of presentation

layer are less important, that’s why 3D models of teacher

and students are rather symbolic (however they contain

naturally looking 3D scans of human faces) as well as

other 3D models (classroom’s equipment), see Figure 3.

In this application the CPU time is consumed mainly

by the compression, decompression and conversion of

the video streams.

Virtual classroom uses all standard plugins of the

Rendering API as well as one additional plugin

developed specially for it, i.e. Model3DLoader. This

plugin loads 3D face models in our own format, however

if some additional and common used formats would be

implemented in this plugin, it can become one of the

standard plugins for Rendering API.

5. CONCLUSIONS

The API for applications using concept of synthetic-

natural hybrid (SNH) camera was presented. This API

allows for building efficient distributed applications

which were tested on the basis of virtual classroom. The

API allows for easy combining the natural and synthetic

elements forming a fully immersive environment.

Acknowledgement The work presented was developed

within VISNET, a European Network of Excellence

(http://www.visnet-noe.org), funded under the European

Commission IST FP6 programme.

6. REFERENCES

[1] Shreiner D., M. Woo, J. Neider, T. Davis, OpenGL

Programming Guide: The Official Guide to Learning

OpenGL, Version 1.4, Fourth Edition, Addison-Wesley, 2003.

[2] Sullivan, W.G., Terpenny, J.P. “A Virtual Classroom

Experiment for Teaching the Economic Principles of

Engineering Design”, Proc. 31st ASEE/IEEE Frontiers in

Education Conference, Reno, USA, October 10 – 13, 2001.

[3] Turoff M., “Designing a Virtual Classroom,” Proc.

International Conference on Computer Assisted Instruction

ICCAI’95, Hsinchu, Taiwan, March 7-10, 1995.

	Index
	Conference Info
	Welcome Message
	Venue
	Sponsors
	Committees

	Sessions
	Wednesday, 13 April, 2005
	WedAmOR1-Special Session on Video Surveillance I
	WedAmOR2-Special Session on Semantic Multimodal Analysi ...
	WedAmOR3-Special Session on Video Surveillance II
	WedAmOR4-Special Session on Semantic Multimodal Analysi ...
	WedPmOR1-Special Session on Semantic Multimedia Analysi ...
	WedPmOR2-Face Detection and Recognition I
	WedPmOR3-Special Session on Semantic Multimedia Analysi ...
	WedPmPO1-Posters I

	Thursday, 14 April, 2005
	ThuAmOR1-Video Coding and Transmission
	ThuAmOR2-Audio-Visual Processing
	ThuAmOR3-Special Session on Mixed and Augmented Reality
	ThuAmOR4-Special Session on Real-Time Object Tracking: ...
	ThuPmOR1-Special Session on Universal Multimedia Access ...
	ThuPmOR2-Special Session on Media Security
	ThuPmPO1-Posters II
	ThuPmOR3-Face Detection and Recognition II

	Friday, 15 April, 2005
	FriAmOR1-Search and Retrieval
	FriAmOR2-Analysis and Classification I
	FriAmOR3-Special Session on Personalised Knowledge Syst ...
	FriAmOR4-Watermarking
	FriPmOR1-Special Session on 3D Reconstruction and Rende ...
	FriPmOR2-Analysis and Classification II
	FriPmOR3-Special Session on 3D Reconstruction and Rende ...
	FriPmPO1-Posters III

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	Ó
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Multimedia content analysis and understanding
	Content generation and manipulation
	Content-based browsing, indexing and retrieval of image ...
	2D/3D feature extraction
	Advanced descriptors and similarity metrics for audio a ...
	Relevance feedback and learning systems
	Supervised and unsupervised segmentation of objects in ...
	Identification and tracking of regions in scenes
	Voice/audio assisted video segmentation
	Analysis for coding efficiency and increased error resi ...
	Analysis and understanding tools for content adaptation
	Multimedia content adaptation tools, transcodingand tra ...
	Content summarization and personalization strategies
	Data hiding and copyright protection of multimedia cont ...
	Semantic mapping and ontologies
	Multimedia analysis for advanced applications
	Multimedia analysis for surveillance, broadcasting, mob ...
	Knowledge-Assisted Multimedia Analysis
	Semantic Web and Multimedia

	Search
	Help
	Browsing The Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations And Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Krystian Ignasiak

