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ABSTRACT

The texture of mammograms is characterised using two-dimensional
(2 − D) autoregressive (AR) models under the assumption that
each distinct texture can be described by one set of coefficients. In
this paper we compare the 1 × 1 and 2 × 2 AR model coefficients
as well as the degrees of symmetry of these coefficients of the tu-
mour area of a mammogram with other mammograms with the
same type of tumour and tissue background. From the simulation
results, it is found that the AR model coefficients are similar for
the same type of tumours and the degree of symmetry is small for
the area containing a tumour, which suggests that the AR model
coefficients are symmetric.

1. INTRODUCTION

The two-dimensional (2−D) autoregressive (AR) model has been
regarded as one of the methods to characterise the textures in an
image [2]. A number of methods are available in the literature for
solving 2−D AR modelling problems including the Yule-Walker
system of equations (YW) [3], the Yule-Walker system of equa-
tions in the third-order statistical domain (YWT) [7] and the con-
strained optimisation formulation with equality constraints [4]. In
this paper, the last aforementioned method, which relates the YWT
method to the YW method is chosen to estimate AR model coeffi-
cients, because it is able to give good estimations in both low and
high signal-to-noise (SNR) systems and the variances arisen from
the estimates of a number of realisations are lower than employing
the YWT method alone.

We divide all 322 mammograms in the database [6] into groups
according to their tumour type and background tissue characteris-
tics. The details of mammogram are given, such as the character
of background tissue, the class and severity of abnormality, the im-
age co-ordinates and the approximate radius of abnormality. The
AR model coefficients of the square block containing a tumour
are estimated. In [4], we concentrated on the intra-information,
i.e., the comparison in AR model coefficients between the tumour
block and the blocks in its neighbourhood. Here we look into the
inter-information, i.e., how the AR model coefficients are related
to different mammograms with the same type of tumour. In this
work, we concentrate on the mammograms with fatty background
and tumours.

The 2 − D AR model is defined in Section 2. The YW and
YWT methods are revisited in Sections 3 and 4 respectively. In
Section 5, the constrained optimisation formulation method used

to estimate AR model coefficients is given. The degree of symme-
try is defined in Section 6. In Section 7, the simulation results can
be found, followed by the conclusion and summary in Section 8.

2. TWO-DIMENSIONAL AUTOREGRESSIVE MODEL

Let us consider a digitised image x of size M × N . Each pixel of
x is characterised by its location [m, n] and can be represented as
x[m, n], where 1 ≤ m ≤ M , 1 ≤ n ≤ N . x[m, n] is a positive
intensity (gray level). The two-dimensional (2−D) autoregressive
(AR) model output, x[m, n], is defined as [3]

x[m, n] = −

p1
∑

i=0

p2
∑

j=0

a[i, j]x[m − i, n − j] + w[m, n], (1)

where [i, j] 6= [0, 0], a[i, j] is the AR model coefficient, w[m, n]
is the input driving noise, and p1 × p2 is the order of the model.

The driving noise, w[m, n], is non-Gaussian and assumed to
be zero-mean, i.e., E{w[m, n]} = 0, where E{·} is the expecta-
tion operation. The AR model coefficient a[0, 0] is assumed to be
1 for scaling purpose, therefore we have [(p1 + 1)(p2 + 1) − 1]
unknown coefficients to solve.

An additional zero-mean Gaussian noise, v[m, n], with vari-
ance equal to unity, is added onto the system. Mathematically the
new system is written as y[m, n] = x[m, n]+v[m, n]. The signal-
to-noise ratio (SNR) of the system is calculated by

SNR = 10log10

σ2

x

σ2
v

dB (2)

where σ2

x is the variance of the signal and σ2

v is the variance of the
noise.

3. YULE-WALKER SYSTEM OF EQUATIONS

The Yule-Walker system of equations for the quarter-plane model
can be written in matrix form as [3]

Ryya
1

= h, (3)

where Ryy is of dimension [(p1 +1)(p2 +1)]× [(p1 +1)(p2 +1)]
and a

1
and h are both of dimension (p1 + 1)(p2 + 1) × 1.

More explicitly, equation (3) can be rewritten as in equation
(4) on the next page [7]. In equation (4), a[i] = [a[i, 0], a[i, 1], · · · ,
a[i, p2]]

T is a (p2 + 1) × 1 vector, T denotes transpose, h1 =











Ryy[0] Ryy[−1] · · · Ryy[−p1]
Ryy[1] Ryy[0] · · · Ryy[−(p1 − 1)]

...
...

. . .
...

Ryy[p1] Ryy[p1 − 1] · · · Ryy[0]

















a[0]
a[1]

...
a[p1]









=







σ2

wh1

0
...
0






(4)

[1, 0, · · · , 0]T is a (p2 + 1) × 1 vector, 0 = [0, 0, · · · , 0] is a
(p2 + 1) × 1 vector and
Ryy[i] =








ryy[i, 0] ryy[i,−1] · · · ryy[i,−p2]
ryy[i, 1] ryy[i, 0] · · · ryy[i,−(p2 − 1)]

...
...

. . .
...

ryy[i, p2] rxx[i, p2 − 1] · · · ryy[i, 0]









is a (p2 + 1) × (p2 + 1) matrix.
The second-order moment sample ryy is defined as

ryy[i, j] = E{y[m, n]y[m + i, n + j]}. (5)

Since the input variance σ2

w is unknown, the first equation in
(4) may be eliminated. The coefficient a[0, 0] is assumed to be
1, therefore we can move the first column of the matrix of the
remaining system to the right-hand side of the system. Let us write
the revised system as

Ra = −r, (6)

where R is a (p1p2+p1+p2)×(p1p2+p1+p2) matrix of moments,
a is a (p1p2 + p1 + p2) × 1 vector of unknown coefficients and r
is a (p1p2 + p1 + p2) × 1 vector of moments.

4. YULE-WALKER SYSTEM OF EQUATIONS IN THE
THIRD-ORDER STATISTICAL DOMAIN

The YW method introduced in Section 3 is able to estimate the
AR model coefficients only when the system SNR is large. When
the SNR is small, the estimation results are influenced by the large
Gaussian noise [4, 5], [7] and [8]. In the literature, the Yule-Walker
system of equations in the third-order statistical domain has been
used to solve this problem. The equations may be written in matrix
form as [7]

Cyya
1

= −cyy. (7)

More explicitly, equation (7) can be rewritten as equation (8)
on the next page, in which a[i] = [a[i, 0], a[i, 1], · · · , a[i, p2]]

T is
of dimension (p2 + 1) × 1, h1 = [1, 0, · · · , 0]T is of dimension
(p2 + 1)× 1, 0 = [0, 0, · · · , 0]T is of dimension (p2 + 1)× 1 and
the matrix C

3y[i] of dimensions (p2 + 1) × (p2 + 1) is shown in
equation (8).

The third-order moment sample for a zero-mean process may
be estimated by
C3y([i1, j1], [i2, j2]) =

E{y[m, n]y[m + i1, n + j1]y[m + i2, n + j2]}. (9)

The skewness of the driving input is also unknown, therefore
we can further simplify the equations applying the same rule men-
tioned at the end of last section. The equations can be written as

Ca = −c (10)

for model order p1 ×p2, where C is a (p1p2 +p1 +p2)× (p1p2 +
p1+p2) matrix of third-order moments, a is a (p1p2+p1+p2)×1
vector of unknown AR model coefficients and c is a (p1p2 + p1 +
p2) × 1 vector of third-order moments.

5. CONSTRAINED OPTIMISATION WITH EQUALITY
CONSTRAINTS

The method proposed in [4, 5] relates equation (10) to equation
(6) through a constrained optimisation formulation, which can be
written mathematically as [4]

minimise

W
∑

i=1

(Ria + ri)
2

subject to
C

1
a = −c

1
(11)

where W is the number of rows in matrix R in equation (6),
Ri is the i-th row of the matrix R in equation (6),
ri is the i-th element of the vector r in equation (6),
a is the vector of unknown AR model parameters,
C

1
is as the matrix C defined in equation (10) without the last row,

and c
1

is as the vector c derived in equation (10) without the last
row.

The last rows in C and c are chosen to be eliminated after some
statistical tests. Equation (11) is solved using sequential quadratic
programming (SQP) technique [1].

6. DEGREE OF SYMMETRY

The degree of symmetry (DOS) was first defined in [4] for 1 × 1
AR models under the assumption that a set of stable 2 − D AR
model of coefficients is formed by two sets of stable 1 − D AR
models. If a

1
is a row vector that represents a set of a stable 1−D

AR model coefficients and a
2

is another row vector that represents
a set of stable 1 − D AR model coefficients, then a, where a =
aT
1
× a

2
, is a set of stable 2 − D AR model coefficients and T

denotes the transposition. When a
1

is equal to a
2
, the 2 − D

AR model coefficients representing by the matrix a is symmetric.
Mathematically the DOS is written as

DOS1×1 = a[1, 1] − a[0, 1] × a[1, 0]. (12)

In this paper, the idea is extended for 2 × 2 AR models.
DOS2×2 =
1

4
[(a[1, 1] − a[0, 1] × a[1, 0] + (a[1, 2] − a[0, 2] × a[1, 0])+

(a[2, 1] − a[0, 1] × a[2, 0]) + (a[2, 2] − a[0, 2] × a[2, 0])]
(13)

When the DOS is small for an AR model, it is said to be more
symmetric. For an absolute symmetric AR model, the DOS is zero.

7. RESULTS FROM MAMMOGRAMS

322 mammograms can be obtained from the MIAS MiniMam-
mographic Database [6], from which we are also given the de-
tails of the mammograms such as the character of background tis-
sue: fatty, fatty-glandular or dense-glandualr; class of abnormal-
ity present: calcification, well-defined or circumscribed masses,











C
3y[0] C

3y[−1] · · · C
3y[−p1]

C
3y[1] C

3y[0] · · · C
3y[−(p1 − 1)]
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C
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a[0]
a[1]
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= γw







h1

0
...
0






(8)

C
3y[i] =









C3y([i, 0], [i, 0]) C3y([i,−1], [i,−1]) · · · C3y([i,−p2], [i,−p2])
C3y([i, 1], [i, 1]) C3y([i, 0], [i, 0]) · · · C3y([i,−(p2 − 1)], [i,−(p2 − 1)])

...
...

. . .
...

C3y([i, p2], [i, p2]) C3y([i, p2 − 1], [i, p2 − 1]) · · · C3y([i, 0], [i, 0])









spiculated masses, architectural distoration, asymmetry, normal or
other ill-defined masses; severity of abnormality: benign or ma-
lignant; image co-ordinates of centre of abnormality; and approx-
imate radius of abnormality. The mammograms remain labelled
using the index numbers in the database.

We divide all mammograms into groups according to the back-
ground tissue, the class of abnormality and the severity of the mass.
For each group, a set of 1 × 1 and a set of 2 × 2 AR model co-
efficients are estimated for the area containing the tumour using
the method mentioned in Section 5. We present the results of two
groups, which are mammograms with a well-defined benign tu-
mour and fatty background tissue (Group F CIRC B) and mam-
mograms with an ill-defined malignant mass and fatty background
tissue (Group F MISC M). There are 9 mammograms in Group F
CIRC B with 2 of them having two tumours in the same mammo-
gram and there are 5 mammograms in Group F MISC M.

The estimated 1×1 AR model coefficients for each tumour in
Group F CIRC B may be found in Figure 1. The estimated 2 × 2
AR model coefficients for this group are shown in Figure 2. The
results for Group F MISC M are displayed in Figures 3 and 4 for
1× 1 and 2× 2 AR model coefficients respectively. The degree of
symmetry of both 1× 1 and 2× 2 AR models for Groups F CIRC
B and F MISC M may be found in Tables 1 and 2 respectively.

7.1. Analysis of Results

In Figure 1, all mammograms in the database with F CIRC B char-
acteristics have similar 1 × 1 AR model coefficient values except
mdb010. The similar pattern can be found in Figure 2 for 2×2 AR
model coefficients estimated. Mammogram mdb010 has smaller
coefficient values again. However, the coefficient a[2, 2] fails to
provide the same pattern. In Figures 3 and 4, the mammograms
with a malignant tumour and fatty background tissue demonstrated
their similarity in 1 × 1 AR model coefficients. For the 2 × 2
AR model coefficients, mdb274 have larger values in coefficients
a[1, 2] and a[2, 1].

As shown in Table 1, all mammograms in Group F CIRC
B except mdb010 fall in the range of −0.0098 ≤ DOS1×1 ≤
−0.0015. The AR model coefficients representing the tumours
are more symmetric in AR model order 2 × 2 than order 1 × 1,
since DOS2×2 are much smaller than DOS1×1. This also applies
to the Group F MISC M as shown in Table 2.

8. CONCLUSION AND SUMMARY

In this paper, we revisited three conventional methods for two-
dimensional autoregressive model coefficient estimation: the Yule-
Walker system of equations, the Yule-Walker system of equations
and the constrained optimisation formulation with equality con-
straints. We applied the last method to compute the AR model
coefficients of tumours in mammograms with fatty-background.
From the simulation results obtained, it can be concluded that the
same type of tumours have similar AR model coefficients in both
order 1 × 1 and 2 × 2 and the AR model coefficients are more
symmetric in order 2 × 2 than order 1 × 1.

9. REFERENCES

[1] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimiza-
tion, Academic Press, 1981.

[2] R.M. Haralick, “Statistical and Structural Approaches to
Texture”, Proc. IEEE, Vol. 67, No. 5, pp. 786-804, May
1979.

[3] S.M. Kay, Modern Spectral Estimation: Theory and Appli-
cation, Prentice Hall 1988.

[4] S. Lee and T. Stathaki, “Texture Characterisation Using Con-
strained Optimisation Techniques with Application to Mam-
mography”, Fifth International Workshop on Image Analysis
for Multimedia Interactive Services (WIAMIS 2004), on CD-
ROM, April 2004.

[5] S. Lee and T. Stathaki, chapter titled, “Characterization of
texture surfaces in medical imaging”, Applied Medical Image
Analysis Methods, Editor: Lena Costaridou, CRC Press, to
be published, 2005.

[6] The MIAS MiniMammographic Database,
ftp://peipa.essex.ac.uk/ipa/pix/mias/, last access on 1st
February 2005.

[7] P.T. Stathaki, Cumulant-Based and Algebraic Techniques for
Signal Modelling, Ph. D. Thesis, Imperial College London,
1994.

[8] A. Swami, G.B. Giannakis and J.M. Mendel, “Linear Mod-
eling of Multidimensional Non-Gaussian Pro- cesses Using
Cumulants”, Multidimensional Systems and Signal Process-
ing, Vol. 1, pp. 11-37, 1990.



a[0,1] a[1,0] a[1,1]
−1.5

−1

−0.5

0

0.5

1

1.5
The 1x1 AR model coefficients estimated from mammograms (F CIRC B)

AR model coefficient

A
R

 m
od

el
 c

oe
ffi

ci
en

t v
al

ue

mdb005a
mdb005b
mdb010
mdb012
mdb025
mdb069
mdb080
mdb091
mdb132a
mdb132b
mdb142

Fig. 1. The 1 × 1 AR model coefficients estimated from mammo-
grams in which there is a circumscribed benign tumour with fatty
background tissue (Group F CIRC B).
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Fig. 2. The 2 × 2 AR model coefficients estimated from mammo-
grams in which there is a circumscribed benign tumour with fatty
background tissue (Group F CIRC B).

Mammogram DOS1×1 DOS2×2

Mdb005a -0.0015 −1.6383 × 10−4

Mdb005b -0.0036 −4.3223 × 10−4

Mdb010 -0.1081 -0.0200
Mdb012 -0.0098 -0.0012
Mdb025 -0.0096 −8.8001 × 10−4

Mdb069 -0.0092 −9.6143 × 10−4

Mdb080 -0.0029 −4.3219 × 10−4

Mdb091 -0.0023 −2.9516 × 10−4

Mdb132a -0.0095 -0.0012
Mdb132b -0.0031 −4.3966 × 10−4

Mdb142 -0.0023 −2.8753 × 10−4

Table 1. Degree of symmetry (DOS) of estimated 1× 1 and 2× 2
AR model coefficients from Group F CIRC B.
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Fig. 3. The 1 × 1 AR model coefficients estimated from mammo-
grams in which there is a malignant tumour with fatty background
tissue (Group F MISC M).
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Fig. 4. The 2 × 2 AR model coefficients estimated from mammo-
grams in which there is a malignant tumour with fatty background
tissue (Group F MISC M).

Mammogram DOS1×1 DOS2×2

Mdb134 -0.0011 −1.5109 × 10−4

Mdb144b -0.0050 −6.1454 × 10−4

Mdb267 -0.0019 −3.1942 × 10−4

Mdb271 −7.2625 × 10−4 −9.3807 × 10−4

Mdb274 -0.0438 −0.0046

Table 2. Degree of symmetry (DOS) of estimated 1× 1 and 2× 2
AR model coefficients from Group F MISC M.
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