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Abstract

The present paper proposes a novel combination of Fourier
Transforms for the creation of powerful descriptors, which
can be used for efficient content-based search and retrieval
of 3D models. The proposed method is applied to the vol-
ume of each model, which is decomposed into rays and
planes on which the 1D and the 2D Fourier Transform are
applied respectively. The coefficients produced from these
transformations are the input to the Spherical Fourier Trans-
form, resulting to rotation invariant descriptors, which con-
tain significant shape characteristics. Experiments, which
were performed using a database of 544 3D objects, proved
that the proposed method is superior in terms of precision-
recall than most of the methods reported so far.

1 Introduction

The rapid development of modelling, scanning, digitizing
and visualizing techniques for 3D objects, has increase the
number of the 3D models available on the Internet. This
availability has lead the research community in the develop-
ment of efficient search and retrieval algorithms capable of
determining accurately the similarity between 3D objects.
Based on that premise many groups worldwide are devel-
oping 3D search systems that index a large repository of
computer graphics models, supporting 2D and 3D sketch-
ing interfaces for shape-based queries [1, 2, 3].

Most of the algorithms proposed so far are based on the
query-by-content approach, which has, up to now, been al-
most universally adopted in the literature. The MPEG-7
shape spectrum descriptor [4] is defined as the histogram
of the shape index, calculated over the entire surface of a
3D object. The shape index gives the angular coordinate
of a polar representation of the principal curvature vector,
and it is implicitly invariant with respect to rotation, trans-
lation and scaling. Zhang and Chen [5] use features such as
volume-surface ratio, moment invariants and Fourier trans-
form coefficients. They improve the retrieval performance

by an active learning phase in which a human annotator
assigns attributes such as “airplane”, “car”, and so on to
a number of sample models. Osada et al. [6] introduce
and compare shape distributions, which measure properties
based on distance, angle, area and volume measurements
between random surface points. They evaluate the similar-
ity between the objects using a metric that measures dis-
tances between distributions. In [7] the descriptors that are
extracted from the input model are the geometrical charac-
teristics of the 3D objects such as the angles and edges that
describe the outline of the model.

In [8] a 3D content-based retrieval method relying on 3D
Zernike moments is presented. These moments are com-
puted as a projection of the function defining the object onto
a set of orthonormal functions within the unit sphere; the
3D Zernike polynomials have been introduced in [9]. The
descriptors produced are rotation invariant.

In [10], the “Light Field Descriptor Method” (LFD) is
proposed. They extract features from the light fields ren-
dered from cameras on a sphere. Then, the similarity be-
tween two 3D models is measured by summing up the sim-
ilarity from all corresponding images of a light field.

In [11], the method “Radialized Spherical Extent Func-
tion” (REXT) is based on the Spherical Fast Fourier Trans-
form (SFFT), which is applied to sampled points on the
surface of concentric spheres. The sampled points are
produced taking distances on radii beginning from the 3D
model’s center of mass. The method requires a priori regis-
tration with principal axes.

In [12], the “Spherical Harmonic Descriptor” (SHD)
method also uses the Spherical Fast Fourier Transform. The
surface of the 3D models is first voxelized and then sampled
points are selected on concentric spheres. The absolute val-
ues of the SFFT coefficients calculated on the spheres, form
the descriptor vector.

The approach followed in the present paper, involves the
decomposition of the digitized model’s volume into ray seg-
ments and splines (planes). The 1D and 2D Fourier Trans-
form are applied to the rays and splines respectively, creat-
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ing new functions, which are used as input to the Spherical
Fourier Transform. Then, the magnitude of the produced
coefficients is taken into account so as to create descriptor
vectors, which are completely invariant to rotation. Further,
a method of assigning weights to each descriptor vector is
introduced. The weights are significantly improve the ef-
fectiveness of the overall method.

The rest of the paper is organized as follows: In Section
2 the proposed approach is described. Experimental results
evaluating the efficiency of the proposed method are given
in Section 3. Finally, conclusions are drawn in Section 4.

2 Proposed Method

Firstly, the model’s volume is digitized by defining voxels
and the volumetric binary function fb(x) is created, where
x = (x, y, z) and x, y, z ∈ [0, 2N ], which is defined as:

fb(x) =

{ 1, when x lies within the 3D model’s volume,

0, otherwise.

Using the center of mass and the distance of the most dis-
tant voxel from the center of mass, translation and scaling
invariance are easily achieved.

Afterwards, the integer volumetric function of the model
f(x) is formed by compactifying the information included
in fb(x). Every eight neighboring voxels are grouped,
forming a bigger one which takes values from 0, when none
of the eight voxels lie inside the model’s volume, to 8, when
all of them lie inside, and x, y, z ∈ [0, N ].

The next step involves the decomposition of f(x) into
rays and splines. The origin of the rays is the model’s
center of mass, while the splines are defined on planes
normal to these rays. The spatial position of the ray
segments is described by the couple (η, ρ) where η =
[cosφsinθ, sinφsinθ, cosθ] is the unit vector, A(η, ρ) =
{x| x

|x| = η, ρ ≤ |x| < ρ + ∆ρ}, where ∆ρ is the length
of the radius segment (Fig. 1a). The same couple is also
used to describe the splines: Π(η, ρ) = {x|xT · η = ρ}
(Fig. 1b). Each ray segment and spline can be regarded as
a 1D and 2D function, f1(i) and f2(i, j), respectively. The
values of f1(i) and f2(i, j) are the values of the voxels that
they intersect.

Rays

After the decomposition, f1(i) is transformed into the fre-
quency domain, applying the 1D Fourier Transform:

FT1(n) =
1

N

N−1
∑

i=0

f1(i) exp(−ĵ
2πik

N
) (1)

(a) (b)

Figure 1: Decomposition.

where ĵ =
√
−1 , n = 0, . . . , N−1 and N the total number

of sampled points on each ray segment. Note that instead of
storing the actual coefficient, their amplitudes are calculated
and stored.

Splines

Splines are treated in a similar way with rays. For reasons
that will be explained in the sequence, the Polar Fourier
Transform is computed for each f2(i, j):

FT2(m, n) =
N−1
∑

i=0

N−1
∑

j=0

f2(i, j) exp(−ĵ(
2πim

N
+

2πjn

N
))

(2)
where m, n = 0, . . . , N − 1. In the DFT shifts in the spa-
tial domain cause corresponding linear shifts in the phase
component:

FT2(m, n) exp[−ĵ(am + bn)] ↔ f2(i + a, j + b) (3)

Thus, the DFT magnitude is invariant to circular translation.
Therefore, using discrete polar coordinates, (2) becomes:

FT2(m, n) =

N−1
∑

i=0

N−1
∑

j=0

f2(rij , ξij) exp(−ĵ(mrij + nξij))

(4)
where

rij =
√

(c1i + c2)2 + (c1j + c2)2

ξij = tan−1(
c1j + c2

c1i + c2

) i, j = 0, . . . , N − 1

c1 =

√
2

N − 1
· rmax, c2 = − 1√

2
· rmax

and rotation is converted to a circular translation of ξ.
Again, the harmonic amplitudes |F2(m, n)| are only con-
sidered.

By applying to all A(η, ρ) the Fourier Transform
and storing the amplitude of only one frequency com-
ponent, it can be assumed that a new function F is
created, whose domain are the points (η, ρ) and values
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the selected frequency components for each ray segment,
F 1

n(η, ρ) = FT1(n; η, ρ), where FT1(n; η, ρ) denotes
the n-th frequency component of f1(η, ρ). In the case
of splines F 2

mn(η, ρ) are produced, where F 2

mn(η, ρ) =
F2(m, n; η, ρ). By restricting to different values of ρ, F 1

n

and F 2

mn can be assumed as a set of concentric spheres.
Each sphere will be the input to the Spherical Fourier Trans-
form.

Spherical Fourier Transform

Spherical harmonics [13] are special functions on the unit
sphere, generally denoted by Ylm(η), where l ≥ 0 and
|m| ≤ l. Any function g(η) whose domain is the unit
sphere, can be expanded as an infinite Fourier series of
spherical harmonics:

g(ηi) =
∞
∑

l=0

l
∑

m=−l

αlmYlm(ηi), i = 1, . . . , Ns (5)

where Ns is the total number of sampled points on the unit
sphere and the expansion coefficients αlm are determined
by:

αlm =

Ns
∑

i=1

g(ηi)Ylm(ηi)
4π

Ns

(6)

The overall vector length of αlm coefficients with the same
l:

A(l)2 =
∑

m

αlm (7)

is preserved under rotation, and this is the reason why the
quantities A(l) are known as the rotationally invariant shape
descriptors. By using F 1

n and F 2

mn as input, the results
A1

n(l) and A2

mn(l) are the final descriptor vectors.

Rotation Invariance Conditions

There are two conditions that should be met, in order the
whole procedure to result in rotation invariant descriptors.
Let us assume that the model is rotated, hence f(x) is ro-
tated. This rotation can be assumed as a rotation of F 1

n(η, ρ)
or F 2

mn(η, ρ). This problem is settled by using the Spheri-
cal Fourier Transform which results in rotation invariant de-
scriptors. Moreover, the planes that are perpendicular to the
axis of rotation, will be rotated around that axis, resulting
to a rotated version of their splines. The procedure com-
plies with this condition, since the Polar Fourier is rotation
invariant.

3 Experimental Results

As stated in the previous section, using F 1

n or F 2

mn with dif-
ferent values of n or m, n, will result in different descriptor

vector. In our experiments only the low frequencies were
considered, therefore only F 1

n for n = 0, 1, 2, 3 and F 2

mn

for m, n = 0, 1 were created. In the case of the Spherical
Fourier Transform, the maximum value of l used, was 25.
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Figure 2: Precision-recall diagram of all descriptor vectors.

In order to compare two models, their L-2 distance was
used. Figure 2 illustrates the effectiveness of the 8 produced
descriptor vectors, in terms of precision versus recall, using
a database which contains 544 3D objects [14]. As it is de-
picted in Figure 2, the effectiveness of each descriptor vec-
tor varies, although the 2D Fourier Transform gives more
stable results.

A combination of the aforementioned descriptor vec-
tors was created, which is depicted in Figure 2 as “Com-
bined Fourier Transforms”, showing that the combination
improves the effectiveness of the method.

In order to combine the descriptor vectors, weights were
assigned to each of them, based on their discriminative
power. The weight calculation procedure is as follows: Let
us assume that a model A belongs to class Ci. All the dis-
tances between the descriptor vectors of the objects which
belong to same class should be smaller than those between
each object of this class and the objects of all other classes.
Using this observation, the sum Drel of the distances be-
tween A (the descriptors of A) and the rest of the models
of class Ci is calculated. Additionally, the sum Dirrel of
the distances between A and all the models which does not
belong to class Ci is calculated. The ratio Drel

Dirrel
indicates

how efficient this descriptor vector is, since a small value of
this ratio will indicate that the specific vector has captured
distinctive information about the models. The ratios for ev-
ery descriptor vector are calculated, and they are normalized
in order to sum up to 100. These normalized ratios are the
weights that are assigned to each descriptor vector. The to-
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tal distance between two models A and B can be expressed
as:

D(A, B) =

Nf
∑

i=0

αi · Di(A, B)

where Nf is the number of descriptor vectors, Nf = 8, αi

is the corresponding weight and Di(A, B) is the distance
between A and B with respect to the i-th descriptor vector.

Figure 3 illustrates the precision-recall diagram of the
proposed method and the methods presented in [10, 11, 12].
It is obvious that the proposed method is superior or at least
competitive with those most commonly cited in the litera-
ture.
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Figure 3: Comparison of the proposed method against the
competitive methods in terms of precision-recall.

4 Conclusions

In this paper a new method for efficient content-based
search and retrieval of 3D objects was presented. The
method proposes the combination of three different Fourier
Transforms: the 1D Fourier Transform, the 2D Polar
Fourier Transform and the Spherical Fourier Transform.
Taking advantage of the rotation invariance ensured by the
aforementioned transforms and introducing a new method
of assigning proper weights to each of the produced de-
scriptor vectors, a compound descriptor vector is concluded,
which is used for the retrieval of 3D objects.

Experiments were performed using a database of 544 3D
objects and the results of the proposed method were com-
pared with those of the best known retrieval methods in
the literature. The results show clearly that the proposed

method outperforms or is competitive with others in terms
of precision recall.
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