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ABSTRACT

We resort to a mean-shifting color-based particle filter for the pur-
pose of tracking objects in a video sequence. Primary use case is
the creation of interactive versions of video sequences i.e. video
sequences containing clickable objects. As the tool needs to be
used by non-technical users specification of parameters should be
kept to a minimum. For objects types that were not anticipated and
for which a trained dynamical model is not available, we then pro-
pose run-time estimation of the dynamical model instead of sim-
pler models such as constant velocity with fixed noise variance.
We present results on the performance of such tracker and com-
pare with non-meanshifting particle filters and a single-hypothesis
mean shift tracker.

1. INTRODUCTION

Reliable tracking of an object in a video sequence has been a re-
search topic for several decennia. As generic vision systems with
capabilities comparable to those of a human are not to be ex-
pected soon, current trackers are application-specific. Their de-
sign choices depend on a number of constraints : complexity of
the proposed algorithm (realtime vs non-realtime), availability of
measurements (online vs offline processing), representation of an
object’s state (e.g. rectangle, parameters of a deformable tem-
plate, contour, bitmask, ...), inclusion of uncertainty in the re-
sults (single-hypothesis, single hypothesis with uncertainty, multi-
hypothesis), robustness (e.g. to lighting changes, occlusion, rota-
tion, ...), discriminating features of the target (color, texture, sound,
...), world constraints (fixed vs moving camera, known vs unknown
scene, ...) etc.

This work should be seen in the context of a tracker that fol-
lows objects in video sequences available offline. Intended use
cases are the addition of interactivity to video sequences and re-
gion of interest coding. Objects are represented by their bounding
box in the frame. The input material is not subjected to specific
requirements, so the camera may be fixed or moving and the scene
may be unknown. The main idea is that the user can track any type
of object and has to set only a limited number of parameters. Ex-
amples of existing algorithms suited for these conditions are color
based mean shift trackers [4], color based particle filters [8], and
the online appearance modelling technique by Jepson et al [5].

We experiment with a multi-hypothesis mean shift tracker, hop-
ing that much less particles are needed than a regular particle filter
to obtain good results. As mean shift drives each initial hypothe-
sis (rectangle) to the mode of the likelihood and not the posterior
distribution, this operation should be applied with care. The ini-

tial hypotheses have to be well chosen and the number of mean
shift iterations constrained. To accomodate for objects with un-
known dynamics, we perform online dynamical model estimation.
Section 2 and 3 describe the multi-hypothesis mean shift tracker,
section 4 the run-time dynamical model estimation. Results are
presented in section 5.

2. STATE SPACE MODEL

For robustness reasons, in tracking the estimate for the unknown
state x̂t is often balanced between the prediction by a dynamical
model and the measurement zt given by the observation model at
timestep t, using their respective uncertainties (noise). Existing
frameworks for such estimation are Kalman filters [6] and particle
filters [1]. Kalman filters require the observation and prediction
noise to be Gaussian, a constraint dropped by particle filters at the
cost of added complexity: a plethora of samples in object state
space with associated weights is used to approximate probability
densities. The weighted sample set approximation of the posterior
distribution p(xt|z1:t) can be filtered to the next timestep given
the state transition prior p(xt|xt−1) and a likelihood distribution
p(zt|xt). In this work, the states xt = (x, y,w, h)T are rectangles
with components x, y (center of the rectangle), width w and height
h. p(xk|xk−1) can be a distribution corresponding to a first-order
auto-regressive process

xk = A1xk−1 + d + Bw (1)

or a second-order auto-regressive process

xk = A2xk−2 + A1xk−1 + d + Bw (2)

This requires specification of A1 and A2 (4-by-4), d (4-by-1, con-
stant drift) and B (4-by-4, uncertainty, responsible for spreading
the standard normal noise in the components of w). For the likeli-
hood p(zk|xk) we use the function

exp(−20D[q∗, qk(xk)]2) (3)

from [8], where D[q∗, qk(xk)] is the Bhattacharrya distance [4]
between the model HSV histogram q∗ and qk(xk), the HSV his-
togram of frame k’s pixels inside xk.

3. MULTI-HYPOTHESIS MEAN SHIFT

The proposed tracker combines particle filters[1] and the mean
shift tracking algorithm[4] as previously done in [9]. Each poste-
rior density p(xt|z1:t) is approximated by N weighted hypotheses

{((x
(n)

t|t , . . . , x
(n)

1|t ), π
(n)
t )|n ∈ {1, . . . , N}}.



Each hypothesis is a sequence of states (path), where x
(n)

m|t
is the

state at timestep m that propagated out of the state path
(x
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m−1|t
, . . . , x
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1|t
). The weight π
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t indicates the belief at timestep

t that x
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t|t
is the real state xt of the object, and

∑N

n=1
π

(n)
t = 1.

As is usually done for particle filters, the importance density
from which samples are taken is the state transition
prior p(xk|xk−1).

However, prior to weighting the samples using the likelihood
p(zk|xk), each sample is allowed to evolve towards the local modes
of the likelihood distribution using mean shift. Only a couple of
mean shift iterations are performed, in order to prevent overly ig-
noring of the transition prior and collapsing of all samples onto
one point (or just a couple of points) in object state space.

The algorithm can be summarized as

At timestep t + 1 do:

1. Resample systematically N samples from p(xt|z1:t)
i.e. select N hypotheses

{(x
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(n)′

1|t
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with

p((x
(n)′

t|t
, . . . , x

(n)′

1|t
) = (x

(j)

t|t
, . . . , x

(j)

1|t
)) = π

(j)
t

2. ∀i ∈ {1, . . . , N}

(a) Predict: sample w from a multi-variate stan-
dard normal distribution and set

x
(i)
t+1 = A2x

(i)′

t−1|t
+ A1x

(i)′

t|t
+ d + Bw

or likewise for a first-order model using eq 1.

(b) Meanshift x
(i)
t+1 for m iterations

(c) Calculate weight: π
(i)
t+1 = p(zt+1|x

(i)
t+1)

(d) h
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3. Normalize weights: π
(i)
t+1 =

π
(i)
t+1

∑

N

j=1
π
(j)
t+1

4. The weighted samples approximation of
p(xt+1|z1:t+1) is then {(h

(i)
t+1, π

(i)
t+1)|i ∈

{1, . . . , N}}

A handy user interface allows for initialization and correction
of tracked objects, specification of the dynamical models and mean
shift parameters. The required model histograms q∗ can be loaded
or calculated from pixels inside the initial object rectangles.

4. RUN-TIME DYNAMICAL MODEL ESTIMATION

We want to be capable of tracking an object whose dynamics are
unknown. Rather than using a default, fixed auto-regressive dy-
namical model with a large B that highly spreads the predictions,
we try to learn the dynamics as tracking goes on. At the start
of the tracking process, p(xk|xk−1) is initialised for a broad dis-
tribution from which ample initial hypotheses are drawn e.g. a
distribution corresponding to a first order auto-regressive model
xk = Axk−1 + Bw, with A = I and B a diagonal matrix

Fig. 1. User interface for initialization and correction.

that sufficiently spreads the independent standard normal noise
in each component of w, or a constant velocity model with fixed
noise variance. However, once enough state posterior distributions
{p(xk|z1:k)|k = 1 . . . m} are available, a more accurate model
may be trained. We propose to estimate A1, A2, x̄ and B of a
second order auto-regressive model

xk − x̄ = A2(xk−2 − x̄) + A1(xk−1 − x̄) + Bw

(where x̄ represents the mean target state) at each timestep t > m

and to use this model for the prediction of x
(1)
t , . . . , x

(N)
t . The

estimation at timestep t makes use of the tracker’s posterior distri-
butions {p(xj|z1:j)|j = t−W . . . t− 1}. When W is a constant,
training is performed using a sliding window over the posteriors,
when W = t − 1 all available posteriors are used.

We first performed some offline tests on ground truth data
x∗

1, . . . , x
∗
M for a frantically moving red stick using maximum

likelihood estimation (MLE). The maximum likelihood estimates
for the parameters of a second-order auto-regressive model para-
meters can be calculated using moments Ri and autocorrelations
Rij of ground truth using these equations [2]:
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Fig. 2. Mean of prediction errors at each timestep, in function of
number of past states used to perform MLE of A1, A2, B, x̄ at that
timestep

For small window sizes invertibility problems arose, so the Levinson-
Durbin (LD) algorithm [3] that does not involve matrix inversions
was also used. Figure 2 shows the mean prediction error

e =
1

M

M
∑

i=1

‖x∗
i − (A2(x

∗
i−2 − x̄) + A1(x

∗
i−1 − x̄) + x̄)‖ (4)

in function of W , as well as the mean prediction error when using
a model trained offline from x∗

1, . . . , x
∗
M . As expected, when W is

too small, estimation uses uncharacteristic (biased) data, causing a
larger error. However, some models obtained from large windows
perform better than the globally trained model, which is possible
when the object behaves differently in parts of the sequence. For
this sequence, models trained using W > 100 already perform
well.

Switching from offline training using ground truth to online
training from filtered estimates of the real states introduces the pos-
sibility that the model is trained using incorrect posteriors, which
will cause a bad dynamical model. In spite of this vulnerability
we proceed with the estimation of ϕi = (A1,i, A2,i, x̄i, Bi) from
{p(xj |z1:j)|j = i−W, . . . , i−1} at timestep i. We assume a slid-
ing window of size W and allow ϕi 6= ϕj . North [7] shows how to
derive plausible n-th order auto-regressive models from weigthed
samples posteriors offline. It is an expectation maximization (EM)
technique that in the E-step of the (l+1)-th iteration estimates (us-
ing A

(l)
1,i, A

(l)
2,i, x̄

(l)
i and B

(l)
i ) the sufficient statistics Rij and Ri

(i, j ∈ {1, 2}) for the maximum likelihood estimation of A
(l+1)
1,i ,

A
(l+1)
2,i , x̄

(l+1)
i and B

(l+1)
i in the M-step:

1. Choose suitable values for the starting dynamics

2. Run the Condensation tracker on the training im-
age sequence using the current dynamics, produc-
ing a sample-set representation of the distributions
p(xt|z1:t)

3. (Optionally but advised) run the Condensation
smoothing algorithm, to obtain smoothed distribu-
tions p(xt|z1:T ) where T is the last timestep

4. E-step: find expected values for the moments Ri and
autocorrelations Rij :

E[Rij ] ≈

N
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5. M-step: estimate (MLE) the dynamical model from
these expected values

6. Goto step (2)

For online use however, retracking the target within the con-
sidered window several times per timestep would be intractable.
So we simply stick to estimating the moments and autocorrelations
just once given the newly obtained posterior p(xi−1|zi−1) and dis-
carding p(xi−W−1|z1:i−W−1), followed by maximum likelihood
estimation of ϕi:

At each timestep i, estimate the second order model ϕi =

(A1,i, A2,i, x̄i, Bi) used for sampling x
(1)
i , . . . , x

(N)
i as

follows:

1. E-step: find expected values for the moments Ri

and autocorrelations Rij from p(xi−1|z1:i−1) =
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This can be done fast by reusing calculations of the
previous timestep.

2. M-step: estimate (MLE) the dynamical model from
these expected values

5. RESULTS

We tested the tracker on two sequences: the frantically moving
red stick sequence and the wandering man sequence. The first
sequence contains 766 frames of a fast moving stick with many
direction changes, the second (447 frames) is more relaxed. Dis-
tractors were not included, as they would require a smarter like-



lihood function that deals better with occlusions, clutter, lighting
changes, etc. Ground truth was obtained by running the proposed
tracker and correcting by hand. Following trackers were tested on
each sequence:

• static second-order model, trained offline from ground truth,
3 mean shift iterations, 20 hypotheses (PF+MS).

• tracking using a second-order model, estimated at run-time,
with W = 30, W = 60, W = 120, 3 mean shift iterations
, 20 hypotheses (PF+MS+O).

• no mean shift, offline trained second-order model, 500 par-
ticles (PF).

• single-hypothesis mean shift using a constant velocity model
with fixed variance (Bii = 3, Bij = 0(i 6= j)) (MS).

• same as above, but 20 hypotheses (PF+MS+F).

Tables 1 and 2 present the following results: the mean (1) and
standard deviation (2) over time t of ‖x̂t − x∗

t‖, the mean (3) and
standard deviation (4) over time t of the mean distance between

non-shifted hypotheses and ground truth 1
N

∑N

i=1

∥

∥

∥
x

(i)
t − x∗

t

∥

∥

∥
and

the mean (5) and standard deviation (6) over time t of the small-
est distance between a non-shifted hypothesis and ground truth

min({
∥

∥

∥
x

(i)
t − x∗

t

∥

∥

∥
|i ∈ {1, . . . , N}}). Results were collected

by running each tracker 4 times over each sequence, averaging the
obtained figures and rounding them towards the nearest integer.

Tracker (1) (2) (3) (4) (5) (6)
PF+MS 4 9 22 9 9 7

PF+MS+O, W=30 12 46 33 48 18 40
PF+MS+O, W=60 5 9 22 10 10 9

PF+MS+O, W=120 4 10 23 11 11 10
PF 73 37 97 33 17 14
MS 10 9 24 12 24 12

PF+MS+F 5 10 21 14 15 14

Table 1. Results for the red stick sequence (see text).

Tracker (1) (2) (3) (4) (5) (6)
PF+MS 6 3 7 3 5 3

PF+MS+O, W=30 6 3 7 3 5 3
PF+MS+O, W=60 6 3 7 3 5 3

PF+MS+O, W=120 6 3 8 3 5 3
PF 29 15 32 15 13 10
MS 6 3 9 3 9 3

PF+MS+F 7 5 9 4 5 4

Table 2. Results for the wandering man sequence (see text)

From (5) and (6) it seems the model trained offline from ground
truth is most succesful at predicting the location of the target in
the next frame. However, the difference in prediction and overall
tracking performance is small and does not even exist for the easier
second sequence. Too small window sizes lead to the expected in-
crease in error (W=30 in table 1). Even with 500 particles, PF per-
forms significantly less than PF+MS(+O). Although the best pre-
dictions lie relatively close to the true state, the histogram-based
likelihood does not prefer these good predictions to smaller rec-
tangles lying within the object. Mean shift does not suffer from

this problem due to an expanding window, which however can
cause problems when similar-colored clutter is present in the back-
ground. In such situations, additional features may be used in the
likelihood. MS scores less well in prediction than PF+MS(+O).
The same goes for PF+MS+F, but both recover for these sequences.

The tested particle filters operate at about 1 frame per second
(on a 1 Ghz processor, CIF resolution), on average 10 times slower
than the multi-hypothesis mean-shift trackers.

6. CONCLUSION

We presented our multi-hypothesis mean shift tracker and con-
firmed the good performance claimed in [9]. Additionally, we pro-
posed run-time estimation of a second order dynamical model for
objects whose dynamics are unknown. The technique was tested
and performed well for the considered sequences given a reason-
able amount of initial tracking results gathered using an initial con-
stant velocity model.
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