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ABSTRACT

Classically, motion between two consecutive frames of a
video sequence is computed by solving the optical flow equa-
tion or by block matching. In terms of data consistency, as
opposed to regularization, the first approach is local and,
therefore, it is ill-posed. Moreover, it follows from a linear
approximation of the assumption of brightness constancy.
The second approach is region-based, allowing computa-
tion of a motion more coherent with the data. However,
it is computationally intensive and it sets a limit on the am-
plitude of motion. The computed motion can be used to
segment moving objects. Conversely, motion can be com-
puted more reliably if the moving objects are known. We
propose a method of simultaneous motion computation and
segmentation by minimization of an energy based on the
assumption of brightness constancy. The proposed energy
is defined on a region and relies on a general parametric
motion model. Minimization is performed by a steepest de-
scent algorithm for motion computation and active contour
for segmentation.

1. INTRODUCTION

A classical method of motion computation between two con-
secutive frames of a video sequence is to solve the opti-
cal flow equation [1, 2, 3, 4, 5, 6]. Aside from regular-
ization, this approach is local (or pixel-based) whereas mo-
tion is bound to objects. Moreover, if no parametric motion
model is used, the problem is ill-posed. Finally, the optical
flow equation is a linear approximation of the assumption
of brightness constancy.

The standard method of motion computation in video
codecs is block matching. This method is region-based, or
rather, block-based. It allows to get a motion more coher-
ent with the data although the blocks are independent of the
objects. The motion model is classically translation. Sub-
optimal search methods [7, 8] (as opposed to an exhaustive
search method) can be used to achieve sub-pixel accuracy
with a low computation time. However, there is a user-
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defined limit on the amplitude of motion (usually +15/-15
pixels in both horizontal and vertical directions).

We propose a method of motion computation by mini-
mization of an energy based on the assumption of brightness
constancy, i.e., without linear approximation as in the case
of optical flow. The proposed energy is defined on a re-
gion and relies on a general parametric motion model. Min-
imization is performed by a steepest descent algorithm [9].
We also propose to use this same energy to perform a spa-
tiotemporal segmentation of the sequence using an active
contour method. Actually, considering the motion as an
unknown parameter of the segmentation problem, the pro-
posed method jointly performs motion computation and seg-
mentation. The energy is defined on a portion of the se-
quence composed of at least two frames and minimization
is done on a set of frames.

2. COUPLED ENERGY

Let f be a video sequence composed of gray-scale images
f+. Mathematically, f is a function from S = D x [0, T into
R+ where D is a bounded connected open set of R? and T
is a positive integer. For any m and ¢, f(m,t) is equivalent
to fi(m).

Let v be the optical flow between image ¢ and image
t+1: A vector field representing an apparent motion related
to a local gray-scale coherence between two consecutive im-
ages [1, 2, 3, 4, 5, 6]. If the local gray-scale coherence is
chosen to be the (assumption of) brightness constancy, then

(fe(m) = fryr(m +0))* =0. (1)

In general, Eq. (1) has several solutions v since many
points in an image have the same gray-scale value. There-
fore, the problem of computing the motion of a point must
be constrained. First, Eq. (1) can be extended to a domain
surrounding the point. This implies that the motion of a
point is coherent with the motion of neighboring points.
Second, the motion can be restricted to a class of motion
described by a limited number of parameters. Taking a para-
metric model approach [10, 11], the motion within a domain



) can be defined as follows
v(m) = M(m, ) p(Q), m € Q @)

where M is a 2 X n matrix representing a given motion
model and p is a vector of R"™ composed of the motion
parameters (see Subsections 3.2.2). Combining Egs. (1)
and (2), we define the following energy

B(Q,p) = / (fo(m) = fra(m + M(m, 1) p))* dm (3)

where (2 is a subset of D in f;. Regarding motion (domain
) known), Eq. (3) looks similar to the energy given in [12].
However, the work of [12] is a pixel-based approach since
each pixel has its own independent motion as far as data
consistency is concerned (although regularization makes the
computed motion less local). On the contrary, Eq. (3) de-
scribes a global motion within domain €2 such as proposed
in [9] using the absolute value of the difference instead of
the squared difference (which implies a problem of differ-
entiation when the difference is equal to zero). Moreover,
since (2 is actually unknown, the problem of segmenting f;
is also considered [9, 11]. If energy (3) is iteratively and
alternately minimized with respect to p and €2, then motion
computation and segmentation are coupled but not joint. In
section 3, we propose a joint energy by explicitly writing p
as a function of 2.

3. JOINT MOTION
SEGMENTATION / COMPUTATION ON TWO
FRAMES

Equation (3) is rewritten as a joint motion segmentation / com-
putation problem

B(Q) = [ (m) = fea(me+ M(m. ) pl)))* dm @)
where p(Q2) is given by

p(2) = argmin, /Q (f(m) — oo (m+ M(m, 1) p))? dm
3)

Motion parameters p({2) appear as intermediate auxiliary
(but valuable) variables.

3.1. Motion segmentation
3.1.1. Derivative of the energy

Minimization of energy (4) requires computation of its de-
rivative with respect to €2. This is not a straightforward
development. Domain 2 is made dependent of a dynamic

scheme variable, 7. Derivative is computed with respect
to 7 using the shape gradient technique [13, 14, 15]

dE

GO = ) fealo+ M)

V, (s)N, (s) ds . ©)

where 02 is the oriented boundary of €2, s is the curve pa-
rameter of 9Q(7), p(7) is obtained by Eq. (5), s + M p(7)
is a shortcut for 9Q(7)(s) + M p(r), V- is the (unknown)
local deformation (or velocity) of 9S2, and V. is the inward
unit normal to 0€).

3.1.2. Minimization of the energy

Since a dynamic scheme was introduced to determine the
derivative of (4), the minimization was naturally performed
using the active contour technique [16, 17, 18]. An initial
contour is iteratively deformed according to V. chosen such
that derivative (6) is negative or equal to zero at each itera-
tion. The minimum is reached when the derivative is equal
to zero. The corresponding shape of the active contour rep-
resents the segmentation. This process is described by the
following evolution equation

== (5,7) = Vi (s) = (fi(5) = frea(s + M p(7)))* Ny (s)

(7
where I' is a short notation for ). Note that the motion
parameters are required to compute the deformation at each
iteration.

3.2. Motion computation
3.2.1. Definition of an auxiliary energy

For now, we consider the problem of minimizing energy (4)
with respect to p(7) at  fixed. The value of p(€2) which
minimizes energy (4), if the minimum exists and is unique,
represents the average motion parameter of {2 between im-
ages f; and f;;1 for motion model M. Note that this motion
should be interpreted in a general sense (as opposed to rigid
motion) since, depending on M, it might include non-linear
deformation.

3.2.2. Derivative of an auxiliary energy

Minimization of energy (4) considered as a function of p(2)
requires computation of its derivative with respect to p(2).
It can be shown that (for simplicity, M (m,t) is denoted
by M)

dE

G = =2 [ () = frealm+ M)

MT Vi (m+ Mp)dm  (8)



where M is the transpose of matrix M. The simplest mo-
tion is translation. In this case, we have

M(m,t) = ((1) (1)> and p=a 9)

where a is the translation vector. Therefore derivative (8) is

%g@)::*{L%WUfMMm+M)
Vfiri(m+p)dm . (10)

3.2.3. Minimization of the auxiliary energy

Energy (4) is not globally convex in p if functions f; and
fity1 are, e.g., locally periodic. As a consequence, a steepest
descent algorithm with successive line minimizations in the
direction of the (conjugate) gradient cannot be used. How-
ever, it is considered locally convex near p(f2). Therefore,
we developed an ad hoc steepest descent algorithm with a
variable step.

4. PROCESSING OF A SET OF FRAMES

Processing two frames at a time might not guarantee enough
stability and accuracy to use complex motion models. The
development of the previous sections is extended by writ-
ing an energy for a set of frames, taking the first frame as
the reference for all the subsequent frames. If the object
to be segmented is such that its boundary changes consis-
tently with its motion then writing an energy which takes
the first frame as a reference might increase the robustness
of segmentation. We propose the following joint motion
segmentation / computation problem

Z/h

where p(2) is given by

p() = argmmpz / folm

where domain ) is the segmentation domain in the first
frame and m.(2) is the transformation of point m by the
motion described by parameters p(€2) repeated ¢ times.

— felme(Q)))? dm (11

— fr(me(2)))* dm . (12)

4.1. Motion segmentation

Minimization of energy (11) required computation of its de-
rivative with respect to (2. As previously mentioned, we use
the shape gradient method to obtain the following expres-
sion for the derivative

dE ,
<& ——ZA% ~ Fmu(7,9)))
Vi (s)N-(s) ds . (13)

Minimization of energy (11) is performed by iterating the
following evolution equation

%(s ) = (fo(s) = fr(mi(7,5)))°N-(s). (14)

t=1

4.2. Motion computation

The parametric motion model described by Eq. (2) is conve-
nient because it isolates the motion parameters in a vector.
Thus, the derivative of energy (4) with respect to these pa-
rameters has a simple form. In order to keep this property
for energy (11), the expression of transformed point m;(£2)
must be restricted.

4.2.1. Isotropic motion model

Let us recall that matrix M is a shortcut for M (m,t) (see
Eq. (2) and Section 3.2.2). If M is independent of m and ¢
(e.g., for a translation), we propose to call the motion model
isotropic. In this case it can be shown that

my(Q) =m+t M p(Q) . (15)

Therefore, the derivative of energy (11) with respect to p is

0 = 2 e

t MY Vf,(m+t Mp)dm. (16)

— fi(m +t Mp))

The derivative of energy (11) with respect to € is straight-
forward.

4.2.2. Anisotropic motion model

If matrix M depends on m and/or ¢, we propose to call the
motion model anisotropic (either in space, or time, or both).
In this case, for ¢ greater or equal to 1, we have

m(2) = my_1 () + M(me—1,t —1) p(Q2) (17)
= (mi—2(Q2) + M(my—2,t —2) p(2))

+M(mi_q,t —1) p(Q) (18)

- ... (19)

This expression is not readily usable. However, if the mo-
tion is restricted to a time-independent translation and scal-
ing, then it can be shown that

t—1
my(Q) =k 'm+b> K (20)



In this case, the derivative with respect to the motion param-
eters will have a relatively simple expression

G @) =23 | (fotm) = feme())

dp

. . T
(tkt’lerbZ;;éjk]’l YLK ) V fi(my) dm. .

5. EXPERIMENTAL RESULTS

5.1. Motion computation

In order to evaluate the accuracy of the motion computa-
tion of the proposed method, we performed tests with the
“Translating Tree” sequence of reference for which motion
is known. We compared our results with the study in [19].
Since our method is region-based and the study is pixel-
based, we computed motion in 15x15 blocks and we as-
signed the motion of a block to all of its pixels. Although
this approach allows a comparison with the known motion
field, it probably gives our results a slight disadvantage than
comparing the motion of a block with the average on the
block of the known motion field. We used energy (11) with
a set of 3 frames and a translation motion model. The num-
bers that are not in bold face in table 1 come from [19].

Fig. 1. On left: “translating tree” original image; On right:
vectors obtained using motion estimation of a set of three
frames on 15*15 blocks.

Technique € o )
Horn and Schunck (original) | 38.72° | 27.67° | 100%
Uras et al. (unthresholded) 0.62° 0.52° 100%
Fleet and Jepson (7 = 1.25) | 0.23° 0.19° | 49.7%
Proposed method 0.33° | 0.21° | 81%

Table 1. Comparison of the motion computation with the
results in [19]. Notations: € is the average angular error, o
is the standard deviation of the error, and ¢ is the density of
pixels taken into account in the calculation of ¢ and o.

Table 1 does not provide a strict comparison of the pro-
posed method with existing methods. It only gives a hint

on its accuracy. Note that the study in [19] includes much
more results. We extracted the results for the original Horn
and Schunck technique, for the best technique with a den-
sity higher than 75%, and for the best technique regardless
of the density. As presented in [19], the error measures are
not always performed on the whole image but on a subsets
of the image and this rate is reported in the results as density.
Figure 2 presents results on sequence “Foreman” obtained
with the same energy, number of frames, and motion model
as above. However, the motion was computed on 2 regions
instead of blocks: The foreman’s head and the background.
These regions were obtained by manual segmentation and
the initial guess for our steepest descent algorithm was pro-
vided by a block matching with a pixel accuracy on 16x16
blocks. For clarity, the motion of each region is represented
by several, identical vectors instead of just one.

P "%
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Fig. 2. Motion computation on a set of 3 frames of sequence
“Foreman”.

5.2. Joint motion segmentation / computation

We performed a joint motion segmentation / computation
of a set of 3 frames of sequence “Coastguard”. Although
motion is computed using the 3 frames as described in sec-
tion 5.1, only 2 frames are segmented since the different
proposed energies make use of image intensity up to the
last frame but they make use of the object domains up to
the last but one frame. Figure 3 presents these results. Note
that the front antenna (almost invisible on the images due
to their small size here) had stopped the active contour in
frame ¢ + 1, preventing it to move closer to the other, big-
ger antenna behind. This is also the case in frame ¢ but to a
smaller extent.

6. CONCLUSION

The motion computation aspect of the proposed method proves
to be efficient. The preliminary results on joint motion seg-
mentation / computation are encouraging. We currently work



Fig. 3. Joint motion segmentation / computation of a set of
3 frames of sequence “Coastguard”; First line: User defined
initial contour and segmentation result for frame ¢; Second

line:

Idem for frame t + 1.

on another criterion of temporal coherence defined succes-
sively between two frames. Future works include an exten-
sive study on the relative benefits of the different proposed
approaches: Energy based on a temporal coherence 2-by-2
or with a reference.
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