
PIECE-WISE MULTIMEDIA CONTENT ADAPTATION IN
STREAMING AND CONSTRAINED ENVIRONMENTS1

Christian Timmerer*, Gabriel Panis†, and Eric Delfosse‡

*Klagenfurt University, Austria, christian.timmerer@itec.uni-klu.ac.at

†Siemens AG, Germany, gabriel.panis@siemens.com
‡IMEC, Belgium, eric.delfosse@imec.be

1 Part of this work is supported by the European Commission in the context of the DANAE project (IST-1-507113); http://danae.rd.francetelecom.com.
Special thanks to Ingo Wolf from T-Systems for providing additional test data (i.e., AQoS and gBSD for the audio content).

ABSTRACT

Universal Multimedia Access (UMA) has become a
driving concept behind a significant amount of research
activities. One of MPEG’s (Moving Pictures Experts
Group) responses to UMA is MPEG-21 Digital Item
Adaptation (DIA). In this paper we present how tools as
specified within DIA (i.e., normative XML-based
description formats) are applied in streaming and
constrained environments enabling piece-wise multimedia
content adaptation including the adaptation decision-
taking process and the actual resource adaptation in a
coding format-independent way. Additionally, we
demonstrate how the metadata overhead imposed by DIA
tools can be reduced by means of appropriate metadata
encoding tools.

1. INTRODUCTION

In order to cope with today’s increasing diversity in
multimedia content formats, networks and terminals, the
development of an interoperable multimedia content
adaptation framework has become a key issue. To address
this issue, the Moving Picture Experts Group (MPEG) has
specified a set of normative description tools within the
MPEG-21 Digital Item Adaptation (DIA) standard [1][2]
which can be used to support the adaptation. As such,
DIA enables the construction of interoperable adaptation
engines operating in a device- and coding format-
independent way. Device independence is guaranteed
through a unified description of the environment in which
the content is consumed or through which it is accessed,
namely the Usage Environment Description (UED).
Coding format independence is accomplished by the
Adaptation Quality of Service (AQoS) and (generic)
Bitstream Syntax Description ((g)BSD) tools. In this paper
we will focus on AQoS and gBSD. AQoS enables the
matching of bitstream characteristics to the usage

environment context, described by the aforementioned
UEDs, by providing content-related QoS information
required to select the optimal adaptation parameters.
These parameters together with the bitstream and
corresponding gBSD are then the input of the actual
bitstream adaptation engine. gBSD provides means for
describing the structure of the bitstream independently
from its actual encoding format, enabling a generic
processor to generate a degraded version from the source
bitstream by using its corresponding, possibly
transformed, gBSD.

In practice, streaming scenarios require real-time
adaptation according to dynamically changing usage
environments within the multimedia content delivery
chain [3]. Additionally, content-related QoS information
such as peak signal-to-noise ratio (PSNR) and bit rate can
be quite different from one bitstream segment to another.
As a consequence, piece-wise multimedia content
adaptation mechanisms – including the decision-taking
process – are needed. Finally, mechanisms are required to
limit the additional metadata overhead imposed by the
aforementioned MPEG-21 DIA tools.

In this paper we present details of the adaptation
approach based on [4] and extended by a piece-wise
adaptation decision-taking process utilizing methods from
[5]. This approach is explained on the basis of the simple
use case where the bit rate of a video stream is adapted
through selective B-frame dropping [6] in order to match
the available network bandwidth. Finally, we demonstrate
how applying appropriate metadata encoding schemes can
reduce the metadata overhead.

The remainder of this paper is organized as follows.
A brief overview of the adaptation engine is given in
Section 2. Section 3 provides details about the adaptation
decision-taking process on bitstream segments. The actual
adaptation process of these segments is described in
Section 4. Subsequently, Section 5 provides means for
overcoming the verbosity imposed by XML-based

metadata. The proposed approach is evaluated in Section
6 and Section 7 concludes this paper.

2. ADAPTATION ENGINE

The internals of the adaptation engine are depicted in
Figure 1. AQoS information is provided on a per
adaptation unit (ADU) basis, e.g., per scene or group of
pictures (GOP). The actual bitstream is segmented
according to the application requirements and described
by a gBSD on a per process unit (PU) basis. According to
[4], a PU comprises all information required for the
adaptation of the bitstream segment described by this PU.
The AQoS processor (AQoS-P) within the optimizer
provides piece-wise adaptation decisions, according to the
dynamically changing usage environment, which are used
by the subsequent gBSD processor (gBSD-P) through the
BSDLink description – another DIA tool. The gBSD-P
produces a transformed PU (T-gBSD-PU) according to
the decisions provided by the optimizer. The T-gBSD-PU
is used by the bitstream processor (BS-P) which generates
the adapted bitstream segment (A-BS-S) and is compliant
to the gBSDtoBin process as specified within DIA. In
order to enable further adaptation steps within the delivery
chain the adaptation engine provides updated gBSD (TU-
gBSD-PU) and AQoS (U-ADU) information.

3. ADAPTATION DECISION-TAKING

The adaptation decision-taking process is responsible for
selecting the optimal adaptation parameters according to a
given usage environment context on the basis of content-
related QoS information. MPEG-21 DIA provides a tool,
AdaptationQoS [1][5], to store and process this
information.

Figure 2 depicts the bit rate evolution – per group of
10 frames (i.e., our ADU) – of an MPEG-4 visual
elementary stream encoded compliant to the advanced
simple profile at 25 frames per second and an average bit
rate of 1,715 kbps. Furthermore, it presents the bit rate per

dropped number of B-VOPs (Visual Object Planes) in an
ADU (i.e., Dropped_x, with x number of B-VOPs). The
choice of the actual B-VOP to be dropped is obtained
according to [6].

As shown in Figure 2, the bit rate of a video stream
can significantly differ from one bitstream segment to
another. Thus, for optimal adaptation decision-taking it is
desirable to provide QoS information per bitstream
segment, i.e., per ADU. The size of an ADU can be
chosen arbitrarily and is mostly triggered by trading of
verbosity and accuracy. In this case an ADU corresponds
to a sequence of 10 VOPs.

The AQoS tool allows for providing QoS information
(cf. Figure 2) on an ADU per ADU basis through its
switching mechanism as shown in Document 1. The
switchIOPinRefs attribute indicates that the switching
is done over the “ADUNR” parameter, which will be used
by the AQoS-P to extract and process the QoS
information of the corresponding ADU. When the AQoS-
P receives a value for this parameter, it will match it to the
value of the switchValues attribute, identifying the
ADU, and select the corresponding
ContentDataSwitch element. Each such element
contains the bit rate information of the corresponding
ADU. Hence, the AQoS-P will only process the bit rate
information for the given ADU.

Finally, the presented switching mechanism enables
the streaming and processing of each separate ADU in
parallel with the bitstream and gBSD as shown in Figure
1. Indeed, the AQoS tool can easily be fragmented into its
ADU constituents by extracting the corresponding
ContentDataSwitch elements.

4. METADATA-DRIVEN CONTENT ADAPTATION

The output of the decision-taking process described above
is a set of parameters which control the transformation of
the gBSD. Generally, the transformation of the gBSD is

Figure 1 — Dynamic adaptation decision-taking and bitstream

adaptation in streaming environments.

Bitrate per ADU

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7

ADU nr

B
it

ra
te

 (
kb

ps
) Dropped_0

Dropped_1
Dropped_2
Dropped_3
Dropped_4
Dropped_5

Figure 2 — Bit-rate per adaptation unit and per dropped number of B-

VOPs.

achieved through the application of an XSLT style sheet
with the set of adaptation parameters produced by the
AQoS-P as input parameters to the style sheet. In a
streaming scenario, the gBSD-based adaptation concept
and process [1] is applied at the level of gBSD fragments,
called Process Units (PUs), instead of the entire gBSD.
The fragmentation is arbitrary and application specific.
The only requirement is that it should be possible to
transform and process a PU individually without the need
for information from another PU [3][4].

Figure 1 shows the adaptation engine architecture
where the gBSD-based resource adaptation is applied
using the PU fragmentation concept. The resource adapter
is abstracted from the fragmentation process, which can
be done either offline or online. In our current
implementation the gBSD and bitstream fragmentation is
done online because: a) the process is not resource
intensive and b) it avoids storing potentially large number
of files which implies multiple I/O accesses that are
usually slow. In order to fully exploit the benefits of the
PUs, the processing of the gBSD to extract the PUs can be
done using the Simple API for XML (SAX2) interface,
therefore reducing the runtime memory requirements.

The resource adapter enters a loop, requesting from
the fragmentation algorithm to retrieve the next PU and
the corresponding bitstream segment. The fragmentation
algorithm steps through the gBSD and locates the next PU

2 http://www.saxproject.org

by trying to match the gBSD elements to the
corresponding XPath3 expression in the BSDLink
description (Document 2). The BSDLink links the AQoS
and gBSD and provides the information how to fragment
the gBSD into PUs by means of an additional attribute
defining the PU using XPath. Once the gBSD fragment is
located and extracted, the addressing information in the
gBSD and the corresponding bitstream segment (BS-S) is
located in the resource and retrieved. Given that the PU
and BS-S will be packetized into, e.g., Real-time
Transport Protocol (RTP) packets for streaming,
synchronization information is needed. The fragmentation
algorithm uses hint tracks from the MP4 file format to
identify the relationship between the current BS-S and
corresponding Access Unit (AU). This relationship could
be one-to-one, one-to-many or many-to-one.

The resource adapter receives: the PU, the
corresponding bitstream segment, the timestamps for the
PU, BS-S as well as the AU sequence number. The PU is
then handled like an individual gBSD, as specified in [1].
This means the PU is transformed and then parsed to
generate the adapted bitstream segment. In the case where

3 http://www.w3.org/TR/xpath

<DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-NS">
 <Description xsi:type="AdaptationQoSType">
 <Module xsi:type="LookUpTableSwitchType"
 switchIOPinRefs="ADUNR">
 <Axis iOPinRef="NR_B_FRAMES">
 <AxisValues xsi:type="IntegerVectorType">
 <Vector>0 1 2 3 4 5</Vector>
 </AxisValues>
 </Axis>
 <ContentSwitch iOPinRef="BITRATE">
 <ContentDataSwitch switchValues="0">
 <ContentValues xsi:type="FloatMatrixType"
 mpeg7:dim="5">
 <Matrix>
 2119.74 2052.24 1981.94
 1824.94 1760.50 1553.36
 </Matrix>
 </ContentValues>
 </ContentDataSwitch>
 <ContentDataSwitch switchValues="1">
 <ContentValues xsi:type="FloatMatrixType"
 mpeg7:dim="5">
 <Matrix>
 2103.68 1999.04 1836.86
 1646.68 1449.60 1348.56
 </Matrix>
 </ContentValues>
 </ContentDataSwitch>
 <!-- ... and so on ... -->
 </ContentSwitch>
 </Module>
 <IOPin id="ADUNR"/>
 <IOPin id="NR_B_VOPS"/><IOPin id="BITRATE"/>
 </Description>
</DIA>

Document 1 — AdaptationQoS description on a per adaptation unit
(ADU) basis using the switching mechanism.

<DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-NS">
 <Description xsi:type="BSDLinkType">
 <SteeringDescriptionRef uri="AQoS.xml"/>
 <BSDRef uri="gBSD.xml"
 processUnit="//dia:Description/
 gBSDUnit[@syntacticalLabel=':M4V:GOV']"
 maxPUSize="8262" maxBitstreamPUSize="50857"/>
 <BSDTransformationRef uri="transform.xslt"
 type="http://www.w3.org/1999/XSL/Transform"/>
 <Parameter xsi:type="IOPinRefType"
 name="nrBFrames">
 <Value>NR_B_VOPS</Value>
 </Parameter>
 </Description>
</DIA>

Document 2 — Example BSDLink description linking AQoS (cf.
Document 1) and gBSD (cf. Document 3) and providing the PU

context.

<dia:DIA
 xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
 xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS">
 <dia:DescriptionMetadata>
 <!-- -->
 </dia:DescriptionMetadata>
 <dia:Description xsi:type="gBSDType"
 addressUnit="byte" addressMode="Absolute"
 bs1:bitstreamURI="lotr.cmp">
 <gBSDUnit start="0" length="18"/>
 <gBSDUnit syntacticalLabel=":M4V:GOV"
 start="18" length="105947">
 <gBSDUnit syntacticalLabel=":M4V:I_VOP"
 start="18" length="12270"/>
 <gBSDUnit syntacticalLabel=":M4V:P_VOP"
 start="12288" length="7589"/>
 <gBSDUnit syntacticalLabel=":M4V:B_VOP"
 start="19877" length="3218"/>
 <!-- ... and so on; further VOPs ... -->
 </gBSDUnit><!--... further GOVs ...-->
 </dia:Description>
</dia:DIA>

Document 3 — gBSD fragment describing the bitstream at a frame
and GOV level.

the PU needs to be transported for possible adaptation
somewhere else along the delivery path, an updated PU is
also generated with aligned addressing information.

5. REDUCING THE VERBOSITY OF METADATA

The decision-taking and resource adaptation processes as
described in the previous sections rely on XML-based
metadata as specified within MPEG-21 DIA. Due to the
metadata’s plain-text nature it becomes a burden in
constrained devices, especially relatively to the
multimedia resource it describes which usually is
available in a compressed and highly efficient
representation format. As such, it becomes obvious to
select an encoding scheme for plain text metadata as well,
which provides (1) high compression ratios and (2)
streaming capabilities for XML-based metadata. The
MPEG-7 Systems Binary Format for Metadata (BiM) [7]
satisfies both requirements and is therefore chosen for
encoding the PUs and ADUs.

MPEG-7 BiM is an XML Schema-aware encoding
scheme for XML documents, i.e., it uses information from
the XML Schema to create an efficient alternative
serialization of XML documents within the binary
domain. One of the main features of BiM is that it
enhances plain-text XML, which is non-streamable per se,
with streaming capabilities. Therefore, BiM divides XML
documents into access units (AUs) containing one or more
fragment update units (FUUs). Each FUU includes the FU
command (i.e., the decoder action – add, delete, update –
for the corresponding fragment), the FU context (i.e., to
uniquely determine the location of the fragment), and the
FU payload (i.e., the actual XML data according to the
context). In addition to the efficient binary representation
and streaming capabilities, the FUU’s bitstream structure
offers the possibility to perform filter and update
operation within the binary domain, i.e., similar to what is
provided by scalable coding formats for multimedia
resources. However, a special BiM configuration and
AU/FUU organization is required which is not included in
this paper due to space limitations.

6. EVALUATION AND MEASUREMENTS

We have evaluated our approach regarding the actual
overhead imposed by the metadata. The results are shown
in Table 1 with 10 VOPs per GOV, ADU, and PU
respectively. It shows that plain text XML causes an
overhead per GOV of about 3.86% which can be reduced
through BiM encoding to 0.94% (for the visual stream).
For audio we measured a larger overhead which is due to
a fine-grained description of the gBSD and AQoS. Note
that for BiM encoding the Zlib optimized codec for
strings and the binary context path encoding was enabled.

Additionally, the compression ratio between plain text and
BiM encoded ADU/PU is given.

7. CONCLUSION

In this paper we presented further insights into the
adaptation engine enabling interoperable multimedia
content adaptation for UMA. Due to its generic and
metadata-driven design this approach is applicable for
streaming and constrained environments such as
intermediary network nodes or mobile devices. The
imposed metadata overhead can be reduced by
appropriate encoding schemes although we see further
improvements in this area which will be part of our future
work.

8. REFERENCES

[1] ISO/IEC 21000-7:2004, “Information Technology —
Multimedia Framework (MPEG-21) — Part 7: Digital Item
Adaptation,” 2004.

[2] A. Vetro and C. Timmerer, “Digital Item Adaptation:
Overview of Standardization and Research Activities,” to
appear in IEEE Trans. on Multimedia, 2005.

[3] A. Hutter, P. Amon, G. Panis, E. Delfosse, M. Ransburg,
and H. Hellwagner, “Automatic Adaptation of Streaming
Multimedia Content in A Dynamic and Distributed
Environment,” submitted to the IEEE Int’l Conference on
Image Processing 2005, Genova, Italy, Sept. 2005.

[4] S. Devillers, C. Timmerer, J. Heuer, and H. Hellwagner,
“Bitstream Syntax Description-Based Adaptation in
Streaming and Constrained Environments,” to appear in
IEEE Trans. on Multimedia, 2005.

[5] D. Mukherjee, E. Delfosse, J.G. Kim and Y. Wang,
“Optimal Adaptation Decision-Taking for Terminal and
Network Quality of Service,” to appear in IEEE Trans. on
Multimedia, 2005.

[6] K. Leopold, H. Hellwagner, and M. Kropfberger, “QCTVA
— Quality Controlled Temporal Video Adaptation,”
Proceedings of the SPIE Int’l Symp. ITCom, Orlando,
USA, pp. 163-174, Sep. 2003.

[7] U. Niedermeier, et.al., “An MPEG-7 tool for compression
and streaming of XML data,” Proceedings of the 2002
IEEE Int’l Conf. on Multimedia and Expo (ICME), vol. 1,
Lausanne, Switzerland, pp. 521–524, Aug. 2002.

Table 1 — Average GOV and textual/binary ADU and PU size and the
resulting overhead with regard to the GOV size; compression ratio
between plain text and BiM encoded ADU/PU.

Plain
text

GOV size
[bytes]

AQoS ADU size
[bytes]

gBSD PU size
[bytes]

Metadata
Overhead [%]

visual 42,720.14 529.60 1,121.40 3.86

audio 1,957.50 813.00 9,160.00 509.48

BiM
GOV size

[bytes]
AQoS ADU size

[bytes]
gBSD PU size

[bytes]
Metadata

Overhead [%]
visual 42,720.14 279.00 121.00 0.94

audio 1,957.50 224.00 522.00 38.11

ratio (visual) 1.90 9.27

ratio (audio) 3.63 17.55

	Index
	Conference Info
	Welcome Message
	Venue
	Sponsors
	Committees

	Sessions
	Wednesday, 13 April, 2005
	WedAmOR1-Special Session on Video Surveillance I
	WedAmOR2-Special Session on Semantic Multimodal Analysi ...
	WedAmOR3-Special Session on Video Surveillance II
	WedAmOR4-Special Session on Semantic Multimodal Analysi ...
	WedPmOR1-Special Session on Semantic Multimedia Analysi ...
	WedPmOR2-Face Detection and Recognition I
	WedPmOR3-Special Session on Semantic Multimedia Analysi ...
	WedPmPO1-Posters I

	Thursday, 14 April, 2005
	ThuAmOR1-Video Coding and Transmission
	ThuAmOR2-Audio-Visual Processing
	ThuAmOR3-Special Session on Mixed and Augmented Reality
	ThuAmOR4-Special Session on Real-Time Object Tracking: ...
	ThuPmOR1-Special Session on Universal Multimedia Access ...
	ThuPmOR2-Special Session on Media Security
	ThuPmPO1-Posters II
	ThuPmOR3-Face Detection and Recognition II

	Friday, 15 April, 2005
	FriAmOR1-Search and Retrieval
	FriAmOR2-Analysis and Classification I
	FriAmOR3-Special Session on Personalised Knowledge Syst ...
	FriAmOR4-Watermarking
	FriPmOR1-Special Session on 3D Reconstruction and Rende ...
	FriPmOR2-Analysis and Classification II
	FriPmOR3-Special Session on 3D Reconstruction and Rende ...
	FriPmPO1-Posters III

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	Ó
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Multimedia content analysis and understanding
	Content generation and manipulation
	Content-based browsing, indexing and retrieval of image ...
	2D/3D feature extraction
	Advanced descriptors and similarity metrics for audio a ...
	Relevance feedback and learning systems
	Supervised and unsupervised segmentation of objects in ...
	Identification and tracking of regions in scenes
	Voice/audio assisted video segmentation
	Analysis for coding efficiency and increased error resi ...
	Analysis and understanding tools for content adaptation
	Multimedia content adaptation tools, transcodingand tra ...
	Content summarization and personalization strategies
	Data hiding and copyright protection of multimedia cont ...
	Semantic mapping and ontologies
	Multimedia analysis for advanced applications
	Multimedia analysis for surveillance, broadcasting, mob ...
	Knowledge-Assisted Multimedia Analysis
	Semantic Web and Multimedia

	Search
	Help
	Browsing The Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations And Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Christian Timmerer
	Eric Delfosse
	Gabriel Panis

