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ABSTRACT

An approach for automatically segmenting and tracking a
face in a sequence of color images is presented. The ini-
tial face localization consists of a two-step process: the face
candidates selection using skin color clustering, and the face
verification which picks the best face candidate based on
shape and color cues. The tracking of the detected head
in the subsequent image frames is performed via a kernel-
based method wherein a joint spatial-color probability den-
sity characterizes the head region. The parameterized mo-
tion and the illumination changes affecting the target are es-
timated by minimizing the l2 distance between the densities
of the head candidate and the head model. The proposed
algorithms achieve reliable detection and tracking results.

1. INTRODUCTION

Head detection and tracking schemes have received much
attention from the image processing community due to their
wide range of applications. Indeed, they contribute to a
substantial amelioration of multimedia applications such as
videophony, tele-presence, character animation, user-friendly
interfaces and access-security via person identification [1].
The task of finding a person’s face in an image is referred
to as face localization, face extraction or face segmentation.
Several approaches have been proposed. The grouping of
facial features into face candidates, the use of heuristic rules
about a typical face and the correlation with a fixed or sta-
tistical face template [2].

Recently, kernel-based tracking in the spatial-feature do-
main has emerged as a robust and accurate method [3, 4].
This tracking approach affords us to circumvent the high
computational burden of the face segmentation techniques.
Additionally, since illumination variations often occur in
videophony, we explicitly model them.

The paper is organized as follows. Section 2 presents the
initial face segmentation. In section 3 the head tracking al-
gorithm is elaborated and experimental results are reported.
Finally some conclusions are given in section 4.

2. HEAD DETECTION

2.1. Face Candidates Selection

The skin color is a powerful descriptor for extracting the
human face. Indeed, the human face has a specific color
distribution that often differs from that of the background
objects.

Following Chai et al. [5], we employ the Y CrCb color
space to describe the skin color distribution. Thus, a skin
color map is created by assigning to each color of the skin
pixels the number of occurrences in a face database [6]. The
skin-color region in the CrCb space is then confined to a
polygon that is adapted to each luminance level Y [7]. Fig-
ure 1f shows the polygonal skin domain on a CrCb plane.

Having defined the skin color domain enables us to la-
bel the image pixels as skin/non-skin. To avoid problems
with noise and misclassifications, we first perform a water-
shed segmentation [8, 9, 6], and then classify each segment.
The latter is achieved by detecting whether the segment’s
mean color resides within the pre-determined skin color do-
main. The face candidate regions are then obtained by suc-
cessively merging the neighboring skin segments. However,
the existence of background regions which have a skin-like
color can be misleading. Indeed, face candidates including
the actual face and some background regions can arise. It
occurs frequently for persons with a skin-colored hair. To
alleviate this problem, a supervised clustering procedure is
applied before merging. The approach is similar to that dis-
cussed by Chai et al. [5], but we incorporate direct face
knowledge by assuming that the face skin is more red than
other body parts [10]. The clustering is performed via the
seeded k-means algorithm, applied on the CrCb features of
the skin segments. Three seeds are used for initialization:
a first one at the reddish top of the polygon (K1), a sec-
ond one at the bluish end of the polygon (K2), and a third
one (K3) at the crossing of the bounding lines of R/G > 1
and R/B > 1 semiplanes. K3 has been added to deal with
outliers and yellow/black skin. Finally, the face candidate
regions are obtained by successively merging the neighbor-



ing segments belonging to K1, K2, and K3.
Figure 1 shows the clustering of the skin color map for

the Claire image and the face candidate regions.
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Fig. 1. Claire: (a) face image; (b) labeled image; (c, d, e)
face candidates {Ri}3i=1; (f) k-means clustering of the skin
color map with seed and final mean numbered by cluster

2.2. Face Verification

Having detected several face candidate regions {Ri}N
i=1, the

face verification step picks the best candidate as the face
region. This is done by quantifying two shape cues (Q1

and Q2) based on the best-fit ellipse Ei [11] bounding each
candidate. Ei is described by its center, orientation, and the
lengths of major and minor axes: Ei = (xi, yi, θi, ai, bi).
Additionally, two quantified facial feature cues (Q3 and Q4)
based on the gray-value Y are specified. These cues are
defined as follows:

• Q1 checks if the height to width ratio of the ellipse
approximates that of a human face:

Q1(Ri) = 1/|(ai/bi)− 1.5|
• Q2 is large if the ellipse has a high fill percentage:

Q2(Ri) = card(Ri
⋂

Ei)/card(Ei)

• Q3 expresses the gray-value variance:
Q3(Ri) = 1/varYRi

⋃
Ei

• Q4 allows only a low number of strong corners. The
corner image C is obtained by applying an isodata
threshold on the outcome of a pixel-wise corner mea-
sure acting on the gray-value image [12]:

Q4(Ri) = 1/card(Ri
⋂

C)

The quantified cues Qj of each face candidate Ri can be
compared via a modified z-score:

zi
j =

Qj(Ri)√(∑N
k=1 Qj(Rk)

)
/N

(1)

The minimal z-score for each cue is determined. Finally,
the face measure M i for a face candidate i is formulated as

M i =

√√√√
4∑

j=1

(
zi
j − min

k=1,...,N
(zk

j )
)2

(2)

The face candidate that has the maximal measure localizes
the face in the image. Figure 2 shows the selected face can-
didate for the Claire image.
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Fig. 2. Claire: (a) selected face candidate Ri; (b) ellipse
Ei; (c) detected face Ri

⋃
Ei

3. HEAD TRACKING

The head (target) model consists of the coordinates xi =
(xi, yi) and the colors ui = (R, G, B) of the N pixels in-
side the detected ellipse head shape in the first image frame
(see section 2). In the next frames, the target is subject to
motion and illumination changes, which are described by
parametric models. Head tracking is then cast as an opti-
mization problem where the parameters are estimated us-
ing the similarity between the hypothesized and the can-
didate target. By hypothesized target we mean the sam-
ples {yi,vi}N

i=1 obtained by transforming {xi,ui}N
i=1 via

the parametric models, while the candidate target consists
of the samples {yj = (xj , yj),vj}M

j=1 inside the elliptic
image-region resulting from the motion of the initial el-
lipse head shape. Further, based on these samples, spatial-
color kernel-based probability density estimates are build
and their similarity is assessed via an l2 norm. We next
describe the two parametric models and then derive the for-
mulas for parameter estimation.

3.1. Parametric Motion Model

At each time step or image frame, the target undergoes a ge-
ometric transformation. We assume it consists of a rotation
by an angle θ around a fixed center point x∗ and translation
to a new center point y∗:

y = Mθ (x− x∗) + y∗ (3)



with Mθ =
(

cos θ − sin θ
sin θ cos θ

)
being the rotation matrix.

3.2. Illumination Model

The illumination of the head can change e.g. when it is ori-
ented differently with respect to the light source. The Bidi-
rectional Reflectance Distribution Function (BRDF ) is a
scalar mathematical function specifying the percentage of
light arriving from each incoming direction (angle to light
source) that is reflected in an outgoing direction (viewing
angle to the camera) [13]. We can assume that both direc-
tions are constant, so the illumination level is modified by
a contrast constant λ. To take into account reflections from
neighboring object and camera automatic gain, a brightness
constant δ has to be added [14]. The illumination model ap-
plied on the target color model gives the hypothesized target
color

v = λu + δ (4)

3.3. Kernel-based Distance Optimization

Optimizing the correlation between the hypothesized and
the candidate target is done by minimizing the distance D
between their representations with respect to the parameter
vector ψ = (y∗, θ, λ, δ):

ψ̂ = arg min
ψ

D((xi,ui)N
i=1, I(t), ψ) (5)

In our case, the distance is the l2 norm distance between
the joint spatial-color probability densities [3], as position
and color are considered random variables. The kernel den-
sity estimation is a non-parametric technique to estimate the
probability density distribution from the samples of a mul-
tivariate random variable [4]. The kernel density estimate p
of a target with N samples {xi,ui}N

i=1 is

p(x,u) = p(x, y, u(1) = R, u(2) = G, u(3) = B)

=
α

N

N∑

i=1

(
Khx

(x− xi)
3∏

l=1

Khu(u(l) − u
(l)
i )

)
(6)

where Kh(y) = 1
(
√

2πh)d
exp

(
− 1

2

(
‖y‖2
h2

))
is a gaussian

kernel and α is a normalization constant. The spatial kernel
has a bandwidth hx and dimension dx = 2 and the color
kernels have a bandwidth hu and du = 1. The candidate
target density p(y,v) uses (6) on the samples {yj ,vj}M

j=1

inside the ellipse with new center y∗ and rotated by θ around
x∗ of (3). The target model samples are transformed by (3)
and (4) to obtain the hypothesized set of samples in the cur-
rent frame, {yi,vi}N

i=1, from which we estimate via (6) the
hypothesized target density, p(y,v;ψ). The l2 distance (5)

(1) (2) (3) (4) (5)

Fig. 3. The Synthetic sequence frames

between the hypothesized and the candidate target densities
is given by

D =
∫
‖p(y,v;ψ)− p(y,v)‖2dydv = a

N,M∑

i,j=1

wij + b

where wij , K
(

Mθ (xi−x∗)+y∗−yj√
2

) 3∏

l=1

K

(
λu

(l)
i + δ−v

(l)
j√

2

)

and a and b are constant. Minimizing D is accomplished by
setting to zero its componentwise derivatives with respect
to ψ. The estimated parameters are obtained via an itera-
tive update scheme ψ(n+1) = F(ψ(n)), where F is given by
(7)-(10):

y∗(n+1) =

∑
i,j w

(n)
ij (yj −Mθ(n) x̃i)
∑

i,j w
(n)
ij

(7)

θ(n+1) = arctan

(
−

∑
i,j w

(n)
ij (ỹix̄j − x̃iȳj)

∑
i,j w

(n)
ij (x̃ix̄j + ỹiȳj)

)

with ȳ = y − y∗; x̃ = x− x∗ (8)

λ(n+1) =

∑
i,j w

(n)
ij

∑3
l=1(v

(l)
j − δ(n))u(l)

i∑
i,j w

(n)
ij

∑3
l=1(u

(l)
i u

(l)
i )

(9)

δ(n+1) =

∑
i,j w

(n)
ij

∑3
l=1(v

(l)
j − λ(n)u

(l)
i )

3
∑

i,j w
(n)
ij

(10)

Note that ψ(0) is initialized with the parameters estimated at
the previous frame. Iterating stops when the change in the
distance D is under a preset threshold, thereby yielding the
final parameters ψ̂.

3.4. Results

Synthetic Sequence: The algorithm (7)-(10) is applied with
hx = 3 on the sequence shown in Figure 3 (illumination
changes are present in frames 4 and 5). Figure 4 presents the
ground truth vs. the tracking results with and without mod-
eling the illumination. The final target estimates in the last
frame are depicted in Figure 5. When not using the illumi-
nation model, we try to cope with illumination changes by
increasing the bandwidth of the color kernel. Note that, this
leads to poor estimates as compared with explicitly model-
ing the illumination changes.
Videophony Sequence: The Claire sequence is processed
starting from the detected ellipse comprising the face (see
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Fig. 4. Tracking results for the synthetic sequence
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Fig. 5. Final target estimate for the synthetic sequence -
frame 5

Figure 2b). Tracking proceeds with hx = hu = 3. The
parameter estimates (ŷ∗ and θ̂) are presented in Figure 6.
The final head estimate of frame 65 is shown in Figure 7.
The tracking recovers well from the 3-dimensional motion
of the face (when Claire is looking aside or down) around
frame 25 and 55.
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Fig. 6. Tracking results for the Claire sequence

4. CONCLUSION

In this paper, we presented a head detection and tracking
framework for videophony. Head detection is carried out
by labeling the skin-colored segmented image regions via
clustering the pixel values in the Y CrCb color space. The
use of a polygonal boundary for skin colors avoids the stor-
age of a human face database or skin color probability his-
tograms as in [6]. Combining several shape and facial fea-
ture cues ensures an adequate detection of the face. This au-
tomated head detection is used to initialize the head tracker
for which the kernel-based approach proved to be robust
to the 3-dimensional motion of the face. Moreover, incor-
porating an illumination model into the tracking equations

Fig. 7. Final head estimate for the Claire sequence - frame
65; used target model in upper left corner
enables us to cope with potentially distracting illumination
changes.
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