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ABSTRACT

Robust signal hashing defines a feature vector that characterizes
the signal, independently of non-significant distortions of its con-
tent, due for example to compression. Our paper first proposes a
robust image hashing algorithm, based on radial projection of the
image pixels, and evaluates its robustness and discriminating ca-
pabilities. The method appears to generate similar feature vectors
for visually equivalent images, while resulting in distinct vectors
for two different images. Robust image hashing is then extended
to video sequences by selecting key-frames, and by extracting a
feature vector for each of these frames. Experiments demonstrate
that the proposed approach is able to characterize the video se-
quence content, while providing good robustness towards spatial
or temporal distortions.

1. INTRODUCTION

Accessing, organizing, and managing visual contents present tech-
nical challenges due to the large and always growing amount of
available content, and to the lack of normalized and reliable ways
to describe the image attributes. Following the terminology intro-
duced in recent literature about visual content authentication [1,
2, 3, 4], we use the term ”hashing” to denote the extraction of an
image-based feature vector, but make the distinction between cryp-
tographic and robust hashing. A cryptographic hash, which is gen-
erally used for digital signature, summarizes and uniquely identi-
fies a message by a short and constant bit length feature vector. In
cryptography, the feature vector produced by a hash function dra-
matically changes when a single bit of the input message changes.
One says that cryptographic feature vectors are discontinuous. On
the contrary, a continuous or robust hash function alters the feature
vector in proportion to the changes in the input signal.

Based on the above definitions, in the context of image process-
ing, robust hashing has to generate similar feature vectors for visu-
ally equivalent images, while resulting in distinct vectors for two
different images. As a consequence, the comparison of the image
feature vectors computed by a robust hashing algorithm can indi-
cate whether the corresponding images are visually similar or not,
independently of non-significant distortions due to common ma-
nipulations like compression or re-sampling. Because it defines a
vector that characterizes the image content, robust hashing is an
obvious solution for content identification and indexing. When
used in combination with conventional cryptographic digital sig-
nature methods, robust hashing can also support robust integrity
and authentication systems [1, 5, 6, 7].

Our paper proposes a robust image and video hashing algo-
rithm. Section 2 and 3 describe how to compute the image and
video feature vectors. Section 4 validates our methodology.
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2. ROBUST IMAGE HASHING BASED ON RADIAL
VARIANCE PROJECTIONS

Our proposed robust hashing algorithm works in two steps. First,
a set of radial projections of the image pixels compute the RA-
dial Variance (RAV) vector. Second, the discrete cosine transform
of the RAV vector defines the Transformed RAV (TRAV) vector,
whose first 40 coefficients form our proposed robust image feature
vector, denoted Radial hASH (RASH) vector. We now motivate
our approach, and explain how the radial projections are computed.

The components of the RAV vector are computed on a set of
lines articulated around the center of the image. Defining the fea-
ture vector based on radial projections provides resilience to scal-
ing and rotation around the center of the image. In practice, we
use a 180-sample feature vector, which corresponds to a uniformly
distributed set of 180 angles φ, with 0 ≤ φ < 180. For each pro-
jection angle, the RAV sample is defined as the variance (and not
the mean as originally proposed by the authors in [8]), of the pix-
els luminance values along the corresponding line. The intuition
that lies behind the choice of the variance is the following. As a
second order moment, the variance efficiently captures luminance
discontinuities along the line. In the image, these discontinuities
correspond to edges that are orthogonal to the projection direction.
As a result, the variance is expected to capture relevant informa-
tion about the distribution of the edges in the image, which in turns
characterizes the visual content of an image.

The Discrete Cosine Transform (DCT) is used to extract a
compact image feature vector from the redundant RAV vector. Fig-
ure 1 motivates the DCT coefficients selection. In Figure 1(a), the
variance of the RAV DCT coefficients shows that most of the RAV
vector energy is compacted on few low-frequency DCT coeffi-
cients. We conclude that the DCT efficiently decorrelates the RAV
samples. In addition, Figure 1(b) shows that the noise-to-signal
ratio due to JPEG compression remains almost constant for the 40
first low-frequency RAV DCT coefficients, but progressively in-
creases for higher order coefficients. Based on these observations,
we define the RASH image feature vector as the 40 low frequency
coefficients of the DCT transformed RAV feature vector.

3. VIDEO HASHING BASED ON REPRESENTATIVE
KEY-FRAMES

A naive way to extend ”image hash” to ”video hash” is to com-
pute an image feature vector for each frame of the video sequence.
However, this approach is computationally expensive, results in
high dimensional video feature vector, and is significantly affected
by temporal re-sampling of the video sequence. To circumvent
these drawbacks, we notice that most real-life video sequences can
be temporally divided into video shots [9], defined as groups of
successive frames that are visually similar. Therefore, we decide to
describe the video sequence as a set of feature vectors, one vector
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(b) Noise-to-signal ratio.

Fig. 1. RAV vector DCT statistics as a function of the coefficient
index. Statistics are based on a 40-images subset of the USC-SIPI
database. Noise-to-signal ratio is derived from the RASH error
resulting from JPEG compression of the input images.

being associated to each video shot. In our case, each feature vec-
tor is the RASH vector of a carefully selected key-frame. To select
the key-frames, we first identify some easily detectable frames, the
video-shot boundary frames, simply denoted boundary-frames in
the following. Once the boundary-frames have been located, one
key-frame is selected between each pair of consecutive boundary-
frames. We now formally define boundary- and key- frames.

Video-shot boundary-frames separate groups of (visually) sim-
ilar frames. They can be detected by large disparity measurements
between two successive frames. A common feature to evaluate
the disparity between video frames is the luminance histogram,
and the `1 norm is recommended to compute histogram differ-
ences [10, 11]. So, letting Hk(j) denote the jth component of
the 64-bins luminance histogram of the kth frame, the disparity
d(k, k − 1) measured between frame k and (k − 1) is:

d(k, k − 1) =

64X
j=1

|Hk(j)−Hk−1(j)|, (1)

Once the distance d(k, k−1) has been computed, it is compared to
a threshold to decide whether frame k is a boundary-frame or not.
Next to heuristic thresholds, automatic thresholds, either global or
adaptive, have been proposed in the literature [12, 13]. We propose
to combine both kinds of thresholds as follows.

As in [12], a (pseudo-)global threshold, denoted Tglobal(k), is
defined on a large sliding window of size 2L+1, centered on frame
k. µ(k) and σ(k) denoting the mean and the standard deviation of
the disparity values, d(i, i−1), measured with i in [k−L, k +L],
we define

Tglobal(k) = µ(k) + α1σ(k). (2)

As in [13], a local and adaptive threshold, denoted Tlocal(k),
is computed on a small sliding window of size 2S +1, with S <<
L, centered on frame k. We have

Tlocal(k) = α2dmax2(k) (3)

where dmax2(k) is the second maximum value of d(i, i−1), mea-
sured for i ∈ [k − S, k + S].

Based on (2) and (3), frame k is defined to be a boundary-
frame if d(k, k − 1) is the maximum disparity measured on the
window of size 2S + 1 and centered in k, and if d(k, k − 1) >

max(Tglobal(k), Tlocal(k)). In our experiments, we use : S =
10, L = 50, α1 = 3, and α2 = 2.

The experiments presented in Section 4.2.1 demonstrate that
both thresholds complement each other. In short, we can say that
the global threshold avoids detecting non-relevant boundary-frames
in periods of weak disparities, while the adaptive threshold pre-
vents the detection of too many boundary-frames in periods of high
disparities.

Once the shots have been identified, a key-frame is selected
between each pair of consecutive boundary-frames, to characterize
the corresponding video-shot visual content. Key-frames detection
has been extensively discussed in previous works [14, 15]. For
simplicity, we have chosen a simple approach. Given the indices
k1 and k2 of two consecutive boundary-frames, the index r of the
key-frame is defined by r = arg mink1<k≤k2 dl1(k, k − 1). Rep-
resentativeness of selected frames is discussed in Section 4.2.2.

4. EXPERIMENTAL VALIDATION

4.1. Image hash experimental validation

As explained in the introduction, a robust image hashing algorithm
has to generate (i) equivalent outputs for visually similar inputs (
= robustness), and (ii) different outputs for visually distinct in-
put images ( = collision avoidance). In this section, we evaluate
the robustness and collision avoidance capabilities of our proposed
hashing method. For comparison purpose, we also provide results
based on the 64-bin luminance histogram, which is a common im-
age feature vector used in content-based retrieval system [9].

For each of the 40 images of the dataset, we consider 8 manip-
ulations, generating 320 images, named processed images in the
following. The 8 manipulations envisioned in the experiments are
(i) 3x3 average and Gaussian filtering, (ii) JPEG compression with
80 and 60% quality factor, and (iii) scaling (factors = 1.2, 0.8), ro-
tation (20), and rotation (10) followed by ”inside-box” cropping.

In Figure 2, for each original image, we compare Intra and
Inter matching. The matching between two frames is computed
as the peak of cross-correlation (PCCs) between the feature vec-
tors extracted from the two frames. Intra and Inter matching are
defined with regards to a specific original image. Given an origi-
nal image, the 320 processed images are split into Intra and Inter
images, depending on whether they have been derived from the
original image or not. Based on this classification, Intra (Inter)
matching denotes the matching between the original image and
an Intra (Inter) processed images. A good match corresponds to a
high PCC value. As an example, in Figure 2, the worst Intra match-
ing refers to the smallest PCC computed betwen feature vectors of
an original image and any of the images derived from this original.

Figure 2(a) considers the RASH feature vector. We observe
that all Intra PCC’s are larger than 0.85, and that no Inter PCC
lies above 0.85. We conclude that cross correlation is an effi-
cient way to compare two RASH feature vectors, and that 0.85 is a
good threshold to decide whether two images are visually similar
or not. For comparison purposes, Figure 2(b) provides Intra and
Inter matching based on the 64-bin histogram feature vector. We
observe that in nearly all cases, the worst Intra matching is lower
than the best Inter matching, which indicates that after process-
ing, it is not possible to partition Intra and Inter images based on
histogram comparisons, while it is the case with the RASH vector.
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Fig. 2. Comparison of the worst Intra matching with the best Inter
matching for each one of the 40 tested images taken from the USC-
SIPI database.

4.2. Video hash experimental validation

This section presents a number of experimental results to demon-
strate that the RASH vectors extracted from the key-frames of
a video sequence are good candidates to characterize the video
sequence, independently of the manipulations the sequence has
undergone (compression, sub-sampling, small geometrical distor-
tions). First, we study the robustness of the shot boundary detec-
tion algorithm, i.e. we analyze whether the same video shots are
identified before and after video sequence processing. Doing so,
we show that the shot boundary detection algorithm based on the
combination of an adaptive and a (pseudo-)global threshold out-
performs other approaches. Then, we evaluate the relevance in
terms of sequence representativeness of the key-frames. We show
that the combination of adaptive and global thresholds results in
increased characterization of the video sequence. Finally, we val-
idate the whole system by matching the key-frames that are se-
lected in a processed video sequence, with the key-frames that are
selected either from the corresponding original sequence, or from
other video sequences. This computation demonstrates that, even
for strong degradation of the processed sequence (PSNR lower
than 25 dB), our method remains able to associate each processed
video to its original version.

In this section, we consider three original sequences, each
sequence being extracted from a DVD support. The sequences
are Monster (1341 frames of 576x304 pixels), Swordfish (1364
frames of 642x272), and Star wars Episode I (1092 frames of
688x320 pixels). For each sequence, a processed video sequence
is obtained by capturing with a camera the sequence displayed on
a screen. The average PSNRs of all processed sequences lie be-
tween 23 and 25 dB, which corresponds to severe distortions. For
each original and processed video sequence, we detect key-frames
and compute their RASH vectors. These operations are performed
in real time on a Pentium III, 500MHz, 512Ram.

4.2.1. Shot boundary-frames selection robustness

To validate the performance of a boundary-frame detection al-
gorithm, we compare the set of boundary-frames detected in a
given original sequence with the one detected in a corresponding
processed sequence. We introduce the equivalence measurement,
denoted θ, to quantify the similarity between the sets of original
and processed boundary-frames. θ, which is associated to a given
detection method, and to a pair of original and processed video

sequences, is defined as

θ =
# Correct

# Correct + # False alarm + # Missed
(4)

In equation (4), ”#Correct” denotes the number of boundary-
frames that are detected in both the original and the processed
video sequences. The ”Missed” boundary-frames are the frames
that are detected in the original sequence but not in the processed
sequence. The ”False Alarm” frames denote the frames that are de-
tected in the processed sequence, but not in the original sequence.

We now exploit θ to compare three shot boundary detection
algorithms, using respectively the (pseudo-)global threshold de-
fined by (2), the locally adaptive threshold defined by (3), or a
combination of these two thresholds. Table 1 presents equivalence
measurements for the 3 pairs of original and processed video se-
quences described above, and corresponding to Starwars I (SW1),
Monster (Mon), and Swordfish (Swo). From Table 1, we conclude
that combining (2) and (3) performs better than other approaches.

Threshold SW1 Mon Swo
Local 80, 9% 64, 3% 73, 9%

Global (L = 20) 53, 3% 32, 2% 67, 8%
Global (L = 75) 80, 9% 47, 4% 75, 0%

Combined (L = 20) 85, 0% 69, 2% 77, 2%
Combined (L = 75) 89, 4% 66, 7% 75, 0%

Table 1. Equivalence θ measured between the key-frames sets
derived from original and processed video sequences.

4.2.2. Video feature vector representativeness

We now evaluate the aptitude of key-frames to characterize the
content of a video sequence, depending on the algorithm used to
detect shot boundaries, i.e. to identify video shots. First, we de-
fine the notion of similarity between frames. Then, we consider
and compare the percentages of frames that are similar to the key-
frames selected based on each shot boundary detection algorithm.

Given a parameter ε, we say that two adjacent frames are ε-
identical if the distance measured between these two frames is
smaller than ε.dmax, where dmax is the maximum distance mea-
sured between two consecutive frames on the whole sequence.
Based on this definition, the set of ε-similar frames associated to a
key-frame r is defined as the largest set of consecutive frames that
contains r and such that all pairs of adjacent frames are ε-identical.

Figure 3 displays the average number of frames that are ε-
similar to a key-frame as a function of ε, for different shot bound-
ary detection algorithms. Figure 3 aggregates the results for the
three original video sequences introduced above. We observe that
the curve corresponding to the combined approach lies above all
other curves. We conclude that the shot boundary detection based
on the combination of an adaptive and global threshold better cap-
ture the essence of the video sequence.

4.2.3. Video feature vector system validation

In this section, we analyze the matching between the key-frames
selected in original and processed video sequences. As in Sec-
tion 4.1, the matching between two frames is computed as the peak
of cross-correlation (PCCs) between the RASH feature vectors ex-
tracted from the two frames. Moreover, we say that an original
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Fig. 3. Average number of video frames that are ε-similar to a
key-frame, as a function of ε.

sequence corresponds to a processed sequence if and only if the
processed sequence has been derived from the original sequence.
Based on these definitions, the Intra and Inter matching, associ-
ated to a key-frame selected on a processed sequence, are defined
as follows. Given a key-frame selected in a processed sequence,
its Intra matching is defined as its best matching with any key-
frame extracted from the corresponding original sequence. On
the contrary, its Inter matching is defined as the best matching
with any key-frame extracted from a non-corresponding original
or processed sequences (i.e. a sequence based on Swordfish or
Starwars).

Figure 4 compares Intra and Inter matching for each key-frame
of the processed ”Monster” video sequence. About that figure, it
is useful to mention that among the selected key-frames of each
processed sequence, frames are labeled 8, 9, and 11 do not have
an equivalent among the key-frames selected in their correspond-
ing original sequence. Not surprisingly, the feature vectors of
these ”false alarm” frames present weak INTRA matching values.
Unfortunately, we also observe in Figure 4 that some processed
frames that do have a similar frame among the key-frames of the
corresponding original result in poor Intra PCC value (e.g. the
ones labelled 4 and 6). This is due to the importance of distor-
tions between original and processed sequences (PSNRs < 25
dB!). However, and this is the most important, we observe that
large cross-correlation values, i.e. PCC values > 0.8, are only
achieved for Intra matching. A large PCC value can thus be used
to associate a candidate sequence to the correct original sequence
in the database. For completeness, note also that more complex
and robust decision strategies could be imagined. An example of
information that we do not exploit is the relative temporal ordering
of processed and original key-frames. If an original corresponds
to the processed sequence, the temporal ordering of the processed
and original key-frames should be similar. The design of optimal
decision strategies is left for future research.

5. CONCLUSIONS

For still images, the proposed RASH feature vector appears to be
more robust, and to provide much stronger discrimination than
conventional histogram feature vector. The RASH vector is thus a
good candidate to build indexing systems, or content-based signa-
ture mechanisms. To take benefit from the RASH vector capabil-
ities, video content is summarized into key-frames, each of them
characterizing a video shot, and being described by its RASH vec-
tor. The resulting video hashing system works in real-time, and
supports most distortions due to common image manipulations.
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Fig. 4. Intra and Inter matching for each representative frame of
the processed Monster video sequence.
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