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Abstract

In this paper, we present a novel learning based framework
for restoring images of digits, obtained from vehicle regis-
tration plates, which have been blurred using an unknown
kernel. We model the image as an undirected graphical
model over image patches in which the compatibility func-
tions are represented as non-parametric kernel densities.
The underlying field is assumed to be a non-homogenous
field with separate compatibility functions for different re-
gions in the image. Initially, the compatibility functions are
learned by non-parametric kernel density estimation. Next,
we solve the inference problem by using an extended version
of the non-parametric belief propagation algorithm.

1. INTRODUCTION

Restoration plays a major role in most vision based systems
as the inputs in most cases are blurred/noisy. Blurred im-
ages are a nightmare for any recognition system. Restora-
tion is a neat showcase of the ill-posedness of computer vi-
sion problems. Given a blurred image there can be more
than one sharp natural images which, when blurred, will
generate the original image.

A reasonable estimate of the high resolution image may
be obtained if we have a priori knowledge about the blurring
kernel. If no additive noise is present, then Wiener filtering
can be used as it is the optimal filter. In the presence of
additive noise the Weiner filter method gives the MMSE so-
lution. Further, image restoration can be thought of as a spe-
cial case of super-resolution. Image deblurring and super-
resolution have been treated concurrently by many authors.

In recent years, time domain methods for superresolu-
tion have been principle research fields. Among the time do-
main methods, the two broad sections are iterative methods
and learning based methods. Iterative methods [7, 9, 12, 6]
mostly use a Bayesian framework. The principle idea of the
machine learning approach is to use a set of high resolu-
tion images and their corresponding low resolution images
to build a compatibility model. The images are stored as
patches or as coefficients of other feature representations.

Recently, impressive amount of work has been reported in
this field [1, 3, 10, 4, 2], to name a few. In [4], an example
based learning method was employed for super resolving
natural images up to a zoom factor of 8. The learning based
methods can be made more powerful and robust if the im-
ages are restricted to be of a specific type, as in [1] or [5]
where face images are hallucinated. We note that halluci-
nated images need not be realistic, though. The unique fea-
ture of our work is non-homogenous field assumption. We
slide an overlapping window over the image and learn the
potential functions based on some similarity measure of the
contents of the window with our training data set.

The organization of this paper is as follows. In Sec. 2,
we describe the image model and review the details of the
non-parametric belief propagation (NBP) algorithm. In Sec. 3,
we elaborate our method for image restoration. We intro-
duce the features, potential functions and the non-homogenous
field assumption. In Sec. 4, we present experimental results
of restoration on synthetic digit images and license plate im-
ages. We conclude in Sec. 5, with a discussion about our
work and directions for future research.

2. THE MODEL

2.1. Problem Statement and Notation

Consider a training set of pairs of images of size n given
by {(X1,Y1), (X2,Y2), . . . , (Xn,Yn)}. Let there be an
unknown kernel f(Xi) that maps from Xi to Yi. The ob-
jective of the learning algorithm is given the training set,
to learn a model which can be used to infer the image X
from an observed image Y which is not present in the train-
ing set . We model the image X as an undirected graph-
ical model or more specifically a Markov Random Field
(MRF) [4]. MRF is a factorable distribution defined by the
graph G = {V,E} where each node represents a random
variable xi, i ∈ [1 . . . N ] corresponding to a patch in the
unknown, sharp image, which is associated with an obser-
vation node yi which represents the corresponding patch
in the observed image (Fig. 1). An edge between node xi

and node xj indicates that they are spatial neighbors. The



interaction between neighboring patches xi and xj is mod-
elled using a potential function represented as ψ(xi,xj) and
commonly called the interaction potential. The association
between the image patch xi and its observed blurred ver-
sion yi is modelled as a pairwise potential represented by
φ(xi,yi) called the association potential. The probability
distribution over the particular image and its blurred obser-
vation p(X,Y) can now be expressed in a factorized form
as

p(X,Y) =
1
Z

∏

{i,j}∈E

ψxi,xj

∏

i∈V

φxi,yi . (1)
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Fig. 1. Image Model. xi’s are the non-overlapping hidden
image patches, yi’s are the observed patches. The potential
functions ψ(xi,xj) model the interactions between spatial
neighbors and φ(xi,yj) model the association between a
patch and its observation.

Learning with an MRF involves two phases, namely the
learning and the inference phase. In the learning phase, the
potentials that model the interactions and associations are
learned from the training data. The inference phase com-
putes the marginals of posterior distribution p(xi|Y), for
all the nodes i ∈ V . In the next few sections, we review the
BP algorithm that will be used in the restoration part of our
restoration-recognition loop.

2.2. Non-parametric Belief Propagation

For acyclic graphs, the conditional distributions can be cal-
culated exactly by a local message passing algorithm known
as Belief Propagation(BP) [11]. Non-parametric BP a sim-
ple extension of this algorithm. The message propagated
from node i to a node j in the nth iteration represented as
mn

ij(xj) is given by:

mn
ij(xj) = α

∫

xi

ψ(xi,xj)φ(xi,yi)
∏

h∈Γ(i)\j
mn−1

hi (xi)

(2)

where Γ(i) indicates the neighborhood of the node xi and
α represents an arbitrary proportionality constant. The mes-

sages computed can be combined to obtain the beliefs

bi(xi) = αφ(xi,yi)
∏

h∈Γ(i)

mn
hi(xi) (3)

For tree structured graphs, the beliefs converge to the actual
marginal distributions once the messages from each node
have been propagated to every other node. Therefore, mar-
ginals p(xi|Y) are given by,

p(xi|Y) = αφ(xi,yi)
∏

h∈Γ(i)

mn
hi(xi) (4)

We note that the interaction potential can be decom-
posed into a marginal influence term given by ξ(xi) :=∫
xj

ψ(xi,xj) and a conditional interaction term ψ(xm
i ,xj).

The message update equation Eqn. 2 can be solved in two
phases. The first phase involves computing the product πn

i,j(xi)
of messages mn−1

hi (xi), h ∈ Γ(i)\ j, the association poten-
tial φ(xj ,yj) in which yj is the local observation corre-
sponding to the jth patch and the marginal influence term
ξ(xi).

πn
i,j(xi) := φ(xi,yi)ξ(xi)

∏

h∈Γ(i)\j
mn−1

hi (xi). (5)

The second phase involves integrating the combination of
the above product πn

i,j(xi) with the conditional interaction
term. In [14], [8] Gibbs sampling technique was used to
solve the first phase and the second phase was handled using
stochastic integration and further, represented the messages
non-parametrically using a kernel density estimate as,

mij(xj) =
M∑

m=1

wm
j N

(
xj ; µm

j ,Λm
j

)
(6)

where, wm
j , µm

j , Λm
j correspond to the weight, mean and

covariance associated with the mth kernel.

3. IMAGE RESTORATION WITH
NON-HOMOGENOUS FIELD ASSUMPTION

In this section, we will elaborate the motivation behind the
non-homogenous field assumption. First we will elaborate
our method for learning the association and interaction po-
tentials.

3.1. Learning the Association and Interaction Potential

We model the association potential φ(xi,yi) as a function
over the vectorized patch association as shown in Fig. 2 and
with the form

φxi,yi =
1
M

M∑
m=1

N ([xi,yi];µm,Λm). (7)



where M is the number of components andN ([x,y];µ,Λ)
is the multivariate normal distribution with mean µ and co-
variance Λ over the random vector [x,y]t. From the train-
ing images, the patch association vectors [x,y]t correspond-
ing to the image and its blurred version are constructed. The
patch association vectors are pruned to avoid redundancy.
The potential is constructed by considering a kernel with
the mean chosen as the patch association vector and the co-
variances are chosen using the leave one out cross valida-
tion technique [13]. The interaction potential ψ(xi,xj) is
a function over the vectorized two pixel thick non overlap-
ping patch boundary as shown in Fig. 3 and learned using
the above mentioned non-parametric estimation technique.
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Fig. 2. The vectorized pixels in patch xi are appended onto
the vectorized pixels in patch yi to obtain a feature vector.
The association potential φ(xi,yi) is a function over this
feature vector.
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Fig. 3. The vectorized boundary pixels of patches xi and
xj are appended to obtain a feature vector. The interaction
potential ψ(xi,xj) is a function over this feature vector.

3.2. Non-homogenous field model

For the restoration problem if we want to learn the asso-
ciation and interaction potentials assuming a homogenous
field, then we need to generate the feature vectors for the
entire training data and for each hidden node in the field we
need to search this huge feature space. This is the prime
motivation behind a non-homogenous field model. If we
assume that we have a particular digit in an image, then we
can learn the compatibility functions from a particular sub-
set of our training data set, namely those image pairs which
have that particular digit. This essentially means segment-
ing the images before restoration, assuming there are only
digits in the image, which is the case with most vehicle reg-
istration plates. The non-homogenous field modelling does

exactly this in a more subtle way. We slide a suitably sized
window over the blurred image and then by a suitable sim-
ilarity measure ascertain which images in the training data
set are closer to the image inside the window. Then we use
this subset of the training data set to learn the compatibility
functions. This is a tremendous saving since we are left with
only a few sharp-blurred image pairs to work with instead
of the entire training data set. In Fig. 4 the top image shows
the full plate. The bottom image shows the sliding window
and the similar digits found from the training data set.

Fig. 4. Top image shows the original blurred registration
plate. The lower image shows the sliding window capture,
with the similar digits from the training data set.

4. EXPERIMENTS AND RESULTS

For this work we performed several experiments on syn-
thetic images of digits and actual license plate images. For
the high-res training data set set we used digit fonts from
20 different font families. The digits are represented by
same-size, center-aligned binary images. The low-res train-
ing data set consists of corresponding gray-scale images ob-
tained by convolution with a Laplacian kernel. The real data
set consists of blurred binary registration plate images. To
evaluate the results of the restoration algorithm we subjec-
tively inspect the visual quality of the restored images.

In the first experiment, we perform a “sanity check”
to determine the restoration performance for a test image
where the potentials are learned using images from the train-
ing set which correspond to the digit in the test image. In
Fig. 5 we illustrate the restoration of blurred digits “1” and
“2”. The reconstructed high-res images were almost indis-
tinguishable from the originals (for digits “1” and “6”) or
very close to the original (for digit “2”).

We use correlation as the similarity measure. The test
data is sorted and the top few contenders are selected to
learn the potentials. Finally we present test results on real li-
cense plates images as shown in Fig. 6. The original license
plate, the blurred version of the digits, the deconvolution
based deblurring result as well as our results are shown. It



Fig. 5. Left image is the input to the system. Center image
is the sharpened image using deconvolution methods. Right
image is the output of our algorithm. Testing samples are
taken from the training ensemble.

is fairly clear that our method works well for this scenario.

Fig. 6. Left: The original License Plate. Right: (top to bot-
tom) Blurred input, deblurred using deconvolution methods,
our method.

5. CONCLUSION AND FUTURE WORK

In this work, we use Non-parametric Belief Propagation to
perform restoration of images of digits which have been
blurred using an unknown kernel. The main contribution of
this work is the framework where we minimize the search
space for image restoration by subdividing the images by
overlapping windows and then learning the compatibility
functions for the individual window images.

A promising direction of future research is to extend
the above framework for real scenes and other constrained
domains like faces for applications like tracking and sur-
veillance. Another challenging field where we can extend
this framework is time superresolution. Inter-frame rela-
tionships can be learnt for applications like frame rate en-
hancement.
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