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ABSTRACT 
 
In this paper, for online video surveillance based on a 
stationary camera, which is the basic building block of 
more advanced surveillance systems, we propose an 
efficient and practical background learning and 
subtraction algorithm to extract the foreground. We 
further introduce a novel two-branch shadow removal 
method to remove almost all shadows present while 
preserving the integrity of each foreground object. We 
will show that this foreground extraction algorithm with 
shadow removal runs very fast on a normal PC. By 
embedding it into an integrated video surveillance system, 
we can further prove that it provides sufficient support to 
the robust object tracking. 
 

1. INTRODUCTION 
 
Intelligent video surveillance investigates the use of video 
analysis and object characterisation techniques for 
extracting meaningful object information (spatial, 
temporal and appearance features) from the scene to serve 
various surveillance purposes (e.g. traffic control, crime 
monitoring, forensic evidence searching etc.).  

Background subtraction has been a popular technique 
that uses a reference background model to detect changes 
in the monitored scene. Those changes are most likely due 
to the interesting moving foreground objects. The features 
used for building this model can be pixel intensity, colour, 
edge intensity, depth map or certain mixture of them. 
Several frequently adopted background models are: (1) A 
single reference image plus certain global or dynamic 
thresholds; (2) A Mixture of Gaussian distribution (MoG) 
for modelling each pixel of the scene [1]; (3) Non-
parametric approaches such as the kernel density 
estimation technique (KDE) [2]. 

Following this background-subtraction approach, the 
operations of a video surveillance system can be divided 
into three inter-related phases including (1) background 
learning, (2) foreground object extraction and tracking, 
and (3) high-level applications such as behaviour analysis. 
In addition, to eliminate the camera shaking effect, a pre-
processing step such as video stabilisation may be 
necessary. The object extraction and tracking phase 
further involves two processing steps, namely foreground 
extraction and object tracking. Optionally, an object-
classification step can be performed to decide on the type 

(human, vehicle etc.) of each object (area) before or after 
the object tracking step. 

The main focus of this paper is to develop a real-time 
foreground extraction method for robustly segmenting 
objects out of practical video sequences. For this purpose, 
efficient background subtraction and robust shadow 
detection play vital roles. Although more advanced 
techniques such as KDE may deliver better quality of 
object segmentation, they are in general computationally 
expensive to be applied for real-time systems. Instead of 
single reference image, multi-layered background 
modelling (e.g. MoG) is necessary for accommodating the 
possible scene changes (due to either structural 
rearrangement or lighting condition changes). 
Subsequently a proper choice of the number of layers and 
an appropriate way to learn and to update the model are 
important. On the other hand, a shadow is a region that 
becomes darker compared with its true intensity due to the 
blocking of light by other objects (cast shadow) or by the 
object itself where this region resides (self-shadow). 
While cast-shadowed background may be wrongly 
detected as foreground by a background subtraction 
technique (false positive), self-shadowed object regions 
may be removed by the shadow-removal process (false 
negative). Therefore, a too-weak shadow-removal scheme 
(assuming shadows are highly distinguishable and of small 
amount) will remove only a small portion of shadows, 
thus producing too distorted foreground shape. And, a 
too-strong shadow-removal scheme (assuming shadows 
are everywhere) will likely to treat certain foreground 
regions (e.g. self-shadows) also as shadows, hence 
fragmenting the shape of a true object. A proper balance 
is therefore needed. 

 
Figure 1: The work flow of foreground extraction task. 

Figure 1 shows the work flow of our proposed 
foreground extraction system, which contains mainly three 
modules: background subtraction, foreground noise 
removal, and shadow removal. The purpose is to obtain a 
true object mask free from shadow, noise and spurious 
foreground.  



According to this work flow, the remainder of this 
paper is organised as follows. The implementation of our 
background subtraction method and the three noise 
removal steps is detailed in Section 2. The two-branch 
shadow removal idea is introduced subsequently in 
Section 3. Experimental studies are carried out in Section 
4. Because we are mainly interested in object-level 
applications, we report the performance of our algorithm 
also at this level. And finally, conclusions are drawn in 
Section 5. 
 

2. BACKGROUND SUBTRACTION WITH NOISE 
REMOVAL 

 
In current system, the MoG model is chosen, albeit in a 
simplified form of the original version discussed in [1]. 

In MoG, each pixel is modelled independently by a 
fixed number of Gaussians (G1, G2, ..., GK). At any time t, 
the feature value of an arbitrary pixel p is noted as c

t ℜ∈I  

(c=1 for grey-level images and c=3 for colour images). 
Each Gaussian Gi (i = 1...K) is modelled by a mean 

c
i ℜ∈µ  and a variance 2

iσ . Gi is also associated with a 

weighting factor wi. All the Gaussians are always sorted in 
non-increasing 2/σw  order. 

To determine if the pixel p belongs to foreground, tI  

is compared to each Gi as follows:  
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Following this, three cases are identified:  
1. If no match is found, then the Gaussian with least 

2/σw  (i.e. GK) is updated with a new µ  set to tI , 2σ  

being a big value 2
bigσ  and its weight w being 0. Pixel p is 

declared to be a foreground pixel. 
2. If multiple matches are obtained, then only the 

Gaussian with biggest 2/σw  is set to “matched” and all 
others are set to “unmatched”. This becomes case 3 below. 

3. If only one match is found, the following check on 
this matched Gj is performed:  
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where 0<T<1 and it is a portion factor by which the 
background should at least appear in the video sequence. 

All unmatched distributions maintain their statistical 
properties ( µ  and 2σ ) while their weights are reduced as 
wt =(1-α)wt-1. The matched Gaussian Gj is updated by IIR 
(Infinite Impulse Response) filters as: 
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where 0<α<1 is the learning factor on the incoming 
data (or tI ).  

Eq. 2 can be deduced as follows: Suppose 
measurements taken on all video frames are independent. 
For the pixel p this means I1, I2, ... are all independent of 
each other. Let η  be an estimate of the average of squared 
intensity of pixel p, we would have:  
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Considering that the initial video segment for 
background model learning may also contain moving 
objects, we use the foreground extraction procedure 
described above also for the initialisation purpose. At the 
beginning of the initialisation, for each pixel, all 
Gaussians are initialised as bigσσ = , w=0 and µ  being a 

small negative value so that 2*6.25µµ σ>T  (e.g., 

[ ]Tσσσ *2-*2-*2-µ = ). It turns out that in this way the 

background can normally be initialised within 100 frames. 
Note that here we have simplified the background 

model to requiring only two parameters α and T. α 
controls the speed of updating process. A bigger value of 
α makes the system prone to noise. Therefore a small 
value is preferable for α. In our proposed system, through 
extensive experiments, we found 0.005 to be the most 
appropriate. T represents the frequency that the 
background should at least present. Without any a priori 
knowledge about the scene, T can be safely set as 0.6. 

The choice of K, as discussed in above, is important. 
For adaptability of the MoG model, the minimal value of 
K is 3. The reason behind this is: G1 models the current 
background; G2 accumulates a new background layer (the 
key to background updating); G3 accommodates any new 
incoming non-background pixel which has potential to 
become background. When repetitive moving patterns 
such as waving leaves need to be modelled, K should be 
larger than 3. However, when K becomes bigger, the 
computation becomes far more expensive. To our opinion, 
in a highly correlated system, problems should be 
addressed in different steps where appropriate and in a 
balanced way. To guarantee a real-time system, we leave 
the problem of getting rid of repetitive moving patterns 
the object tracking step, where we can distinguish those 
patterns out by studying their special motion 
characteristics. Therefore, here we permanently set K = 3.  

Further, optionally, at every time instance, after the 
foreground extraction, we judge if the background is still 
valid by assuming the maximum number of objects and 



the maximum size of each individual object. If it is not 
valid any more, the background model is then re-learned. 
By doing this we can prevent sudden overall lighting 
condition change breaking down the whole system. 

After the background subtraction, three steps are taken 
to remove three different kinds of foreground noises:  

1. To smooth the shape of extracted objects, for each 
foreground pixel p, its 8-connected neighbours are 
examined: First, a vector a is constructed consisting of the 
8 neighbouring pixels in clockwise order, i.e. 

Taaaaaaaa ][ 87654321=a  with 1a  being the top-left 

neighbour. 1=ia  if it is a background pixel, otherwise, 0; 

a constant vector b = T]21212121[  is also defined. If 

baT >6, then p is re-classified as a background pixel, 
otherwise, it remains as a foreground pixel. 

2. Isolated foreground pixels like pepper-and-salt 
noises are eliminated by a speckle noise removal filter.  

3. To avoid spurious objects produced by sudden 
lighting condition change, we use the normalised zero-
mean cross correlation (NZCC) technique, which can 
verify if an extracted foreground object is actually a 
lightened or darkened background region or not. 
 

3. TWO-BRANCH SHADOW REMOVAL 
 
For each foreground pixel p, its Y (illumination) value and 
that of its counterpart on the background are calculated as: 

BGRY *299.0*587.0*114.0 ++= . In the following, we 
use the subscript f and b to denote, respectively, the 
foreground and corresponding background pixel. 

First, the brightness distortion value is computed as 
defined in [1], or simply 
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If bf YY < , or the pixel is darker than the background, a 

check for possible shadow is performed as:  
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where 10 << ShadowT .  

On the other hand, if bf YY > , or the pixel is brighter 

than the background, another check for possible highlight 
is performed as:  
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where HighlightT  is a value slightly larger than 1. 

To obtain a clean and true foreground mask, an 
appropriate setting of ShadowT  and HighlightT  is very important, 

though hard to define. To solve this problem, in [3] 
Horprasert et al. proposed an automatic threshold 
determination scheme. However, to suit for real-time 

application, a better solution would be to fix the value of 

ShadowT . In this case, to ensure the connectivity of each 

object’s multiple body parts, either certain heuristic rules 
are needed or a morphological closing should be applied 
to the shadow-removed foreground mask with a large 
kernel. The former approach is highly application 
dependent. And the latter one will inevitably retain 
substantial shadows. A similar analysis applies to HighlightT .  

In view of the problems discussed above, we propose 
a two-branch shadow/highlight removal method. The idea 
is:  

1. Weak shadow elimination: Removing fewer 
shadows and highlights using a bigger value of ShadowT  and 

a smaller value of HighlightT . As a result, the smallest 

bounding box that covers each foreground connected 
region is extracted as the object mask.  

2. Strong shadow elimination: Removing most 
shadows and highlights using a smaller value of ShadowT  and 

a bigger value of HighlightT . The result is over-segmented 

foreground regions, which are named as part regions.  
3. Constrained foreground reconstruction: For each 

object mask, all part regions lying inside it are declared to 
belong to one foreground object. Therefore all pixels in 
those part regions form one blob mask and are used for 
computing the features of this object. 

It should be noted that this two-branch idea is different 
from the hysteresis method mentioned in [4]. The 
hysteresis method only used the salient features to validate 
detected regions. Here we give more trust to salient pixels 
and use vague while bigger masks to connect related 
salient features together. We instead solved the problem 
addressed by the hysteresis problem by adopting the 
NZCC algorithm as mentioned in section 2. 
 

4. EXPERIMENTAL STUDIES 
 
The proposed foreground object extraction system has 
been implemented using MS VC++. Currently, it runs 
around 33fps for frame size 320x240 on a 2.8GHz 
modern PC (including video decoding and encoding) 
without due optimisation. For all experiments, we use the 
same set of parameters as given in Table 1. 

Table 1: Parameter settings used for the experiments 

Background learning: K=3, α=0.005, T=0.6 
Weak shadow elimination: 9.0=ShadowT , 05.1=HighlightT  

Strong shadow elimination: 7.0=ShadowT , 25.1=HighlightT  

An example set of processing results is shown in 
Figure 2. Note that although this sequence has been 
subjected to twice compressions (JPEG and XviD), the 
system can still extract the foreground objects and track 
them throughout the sequence. 



  
(a) The current input frame. (b) The updated background. 

  
(c) The foreground mask 

(white pixels are foreground, 
black areas are background). 

(d) The foreground mask after 
noise removal. 

  
(e) Mask out from weak 

shadow removal. 
(f) Mask out from strong 

shadow removal. 

  
(g) Blob masks. (h) Final bounding objects. 

Figure 2: Foreground extraction results from an example frame. 
It has been further evaluated on various highly 

compressed video sequences (especially compressed 
PETS2001 benchmark database) and consistent good 
performances, in terms of high extraction accuracy and 
robustness to noise influences, have been observed. For 
PETS2001 sequences based on single stationary camera 
(both training set and corresponding test set were used), 
under smooth lighting change (thus excluding the 
background learning and re-initialisation parts), the object 
detection rate of false positive1 is about 5% and that of the 
false negative2 is only around 2%.  

This module is further embedded into a video 
surveillance system, and its good performance contributes 
to the high quality of the whole system. Thanks to the 

   
1 Ratio of spurious objects to total number of objects detected. 
2 Ratio of non-detected objects to total number of true objects. 

clear skeleton provided by the strong shadow removal, a 
simple object classification module has also been realised. 

Figure 3 shows two sampled results of a different 
video sequence. 

 
(a) Tracking example 1. (b) Foreground extracted in (a). 

 
(c) Tracking example 2. (d) Foreground extracted in (c). 

Figure 3: Two examples of foreground extraction and tracking. 
Note that in the segmented masks, the grey level pixels are 
shadows detected by strong shadow elimination module but not 
by weak shadow elimination module. 
 

5. CONCLUSIONS 
 
We have presented in this paper an effective foreground 
extraction procedure with shadow removal that is very 
practical and easily realisable. It can robustly tolerate 
noises introduced especially by video compression, which 
is unavoidable for network transmission. It works 
successfully in tandem with a blob-based tracking 
algorithm in a video surveillance system. To extend this 
work, we will add video stabilisation pre-processing to 
accommodate moving cameras and consider more 
carefully the handling of crowded situations. 
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