
GENERALIZATION OF EMBEDDED MULTIPLE DESCRIPTION SCALAR QUANTIZERS
YIELDING EMBEDDED UNIFORM CENTRAL QUANTIZERS

*A. I. Gavrilescu, A. Munteanu, J. Cornelis, P. Schelkens

Vrije Universiteit Brussel
Interdisciplinary Institute for Broadband Technology (IBBT)

Dept. of Electronics and Information Processing (ETRO)
*e-mail: aigavril@etro.vub.ac.be

ABSTRACT

Nowadays Multiple Description Coding (MDC) has become an ap-
propriate approach for efficient transmission over error prone and
erasure channels. Additionally, data transmission over variable-
bandwidth channels requires the source adaptation to available
bit-rate and user’s needs; hence a fine grain scalability of each
description is a desirable feature. In this context, a new frame-
work enabling the design of generalized Embedded Multiple De-
scription Scalar Quantizers (EMDSQ) yielding embedded uniform
central quantizers is proposed in this paper. The design is formu-
lated for an arbitrary number of descriptions. A control mech-
anism enabling redundancy tuning between the descriptions for
each distinct quantization level is also designed. Instantiations
of the proposed EMDSQ are employed in a wavelet-based cod-
ing system and the redundancy control mechanism is practically
demonstrated. Experiments show that multiple description coding
systems employing EMDSQ provide state-of-the-art results.

1. INTRODUCTION

Error resilient source coding has become more important as the
demand for efficient communication over error-prone and erasure
channels - e.g. packet networks, low-power wireless links - has
recently increased. In this context, Multiple Description Coding
(MDC) is an appropriate approach enabling a good quality data-
reproduction from subsets of the transmitted stream.

A desirable feature for image and video transmission over
variable-bandwidth channels is the source adaptation to the avail-
able bit-rate and user’s needs; hence, a fine-grain scalability of
each description is essential. Additionally, in contrast to classical
non-scalable MDC, the fine-grain scalability of each distinct de-
scription features an enhanced error resilience by enabling for the
central reconstruction using the available data from partially dam-
aged or partially received descriptions. In this case the decoder
can perform the central reconstruction provided that the error or
the missing data is localized, within the received data, using tech-
niques such as synchronization markers.

An MDC system allowing for rate control by employing multi-
ple description uniform scalar quantizers (MDUSQ) and bit-plane
progressive encoding of each description was proposed in [1].
However, the system is limited to the overall control of redundancy
and is conceived only for two descriptions.

In order to provide an arbitrary number of fine-grain refin-
able (layered) descriptions, we have recently proposed embedded

quantizers for MDC (EMDSQ) in [2], [3], [4]. The major advan-
tage of the EMDSQ is that the central quantizers are uniform at
each quantization level, whereas the embedded MDUSQ of [1] are
uniform only at the highest rate. This significantly improves the
rate-distortion performance [2], [3], [4]. However, the proposed
EMDSQ from [2] and [3] are restricted to a fixed high-level over-
all redundancy.

In this paper, a new framework enabling for the designing of
generalized uniform EMDSQ is proposed. All the previously pro-
posed embedded quantization methods for MDC [2], [3], [4] are
seen as instantiations of the proposed framework. A control mech-
anism enabling redundancy tuning between the descriptions for
each distinct quantization level is also proposed.

The paper is stuctured as follows. Section 2 presents a gener-
alized embedded Index Assignment (IA) enabling the design of a
wide range of embedded quantizers for MDC. In Section 3, we es-
tablish the conditions to be satisfied by the generalized embedded
IA to yield uniform embedded central quantizers. The redundancy
control mechanism is illustrated in Section 4 and experimental re-
sults are given in Section 5. Finally, Section 6 draws the conclu-
sions of this work.

2. GENERALIZED EMBEDDED IA

Let us denote by Q0
m, Q1

m, . . . , QP
m a set of embedded side quan-

tizers corresponding to an arbitrary number of descriptions M and
by Q0, Q1, . . . , QP the corresponding set of embedded central
quantizers, where Qp−1(qp

1, . . . ,q
p
M ) =

⋂M
m=1 Qp

m
−1(qp

m) for
any quantization level p, 0 ≤ p ≤ P and m, 0 ≤ m ≤ M .
The embedded side quantizer index qp

m = (qP
m, qP−1

m , . . . , qp
m)

is the output Qp
m(x) for a source sample x ∈ R [5]. For any

p, 0 ≤ p ≤ P , the partition cells of any quantizer Qp
m and Qp are

embedded in the partition cells of the quantizers QP
m, . . . , Qp+1

m

and QP , . . . , Qp+1 respectively.
Consider an M -dimensional IA matrix M in which a number

N of elements are mapped. We recursively split the IA hyperma-
trix along each dimension m, 0 ≤ m ≤ M for a number of P
levels. According to this recursive splitting M is a block hyper-
matrix of the form: M = [Bp

j1...jm
]1≤jm≤J

p
m

for any arbitrary
level p, 0 ≤ p ≤ P , where Jp

m represents the number of block
elements at level p for the dimension m. Such an M hypermatrix
can be considered as a generalized embedded IA. Consequently, a
set of embedded side quantizers Qp

m and the corresponding set of
central quantizers Qp are associated with such an embedded IA.
It is noticeable that a number of Jp

m cells are contained in Qp
m,
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Fig. 1. Index assignment matrix and embedded index allocation
corresponding to two-level embedded side quantizers.

additionally, in the most generic case, the number of partitions Jp
m

along different dimensions m is not necessarily constant.
Fig. 1 depicts an example of embedded IA matrix (M = 2).

For the coarsest level (p = P ), the original IA matrix is a block
matrix split into six blocks (two rows and three columns of blocks)
as shown in Fig. 1(a). The corresponding side quantizers are de-
picted in Fig. 1(c) as Q1

1 and Q1
2. For the finer quantization level,

each row and column of blocks are either not split or further split
into two or three rows or columns of blocks, respectively. The
corresponding side quantizers for this level are Q0

1 and Q0
2 .

It can be easily verified that the proposed generalized em-
bedded IA includes the particular embedded IAs of multi-
ple description uniform embedded quantization that we pro-
posed in [2], [3], [4] and the embedded MDUSQ proposed
by Guionnet et. al. in [1].

3. UNIFORM EMBEDDED CENTRAL QUANTIZERS

As previously indicated in the literature, a uniform entropy coded
quantizer with centroid codewords is optimal for high-rates [6] and
very nearly optimal for low rates [7]. These conditions were ex-
tended for multiple description coding in [8].

The theorem hereunder sets the conditions to be satisfied by
the generalized embedded IA to yield Uniform Embedded Central
Quantizers. Denote by [0] the zero hypermatrix, and define the
operator nnz(M) determining the number of nonzero elements
contained in a hypermatrix M.

Theorem: Let M be an embedded IA hypermatrix, and the
corresponding central quantizer for the highest rate (p = 0) be
uniform. The central quantizers are uniform at all quantization
levels (p, 0 ≤ p ≤ P ) if and only if for any p in each hyperblock
Bp

j1...jm
6= [0] (1 ≤ jm ≤ Jm, 1 ≤ m ≤ M ) a constant number

of consecutive elements are mapped.
Proof : (if) If, for any p, consecutive indices are mapped

in any block Bp
j1...jm

6= [0], then the corresponding central-
quantizer cells are connected cells of size nnz(Bp

j1...jm
) · ∆C ,

where ∆C ∈ R∗+ is the central-description’s constant partition
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Fig. 2. Recursive block-matrix decomposition.

size for level p = 0. By assumption, the number of nonzero
elements for all Bp

j1...jm
6= [0] at each p is constant, thus:

nnz(Bp
j1...jm

) = nnz(Bp
i1...im

), ∀jm, im 1 ≤ jm, im ≤ Jp
m

for any Bp
j1...jm

6= [0], Bp
i1...im

6= [0] and 0 ≤ p ≤ P . Hence,
the central quantizer at any level p is uniform with the cell size
given by ∆

(p)
C = nnz(Bp

j1...jm
)∆C .

(only if) Assume by contradiction that there is Bp
j1...jm

6= [0]
for which the indices mapped in Bp

j1...jm
are not consecu-

tive. This implies that the corresponding central-quantizer
cell is disconnected, which contradicts the assumption that the
central quantizer is uniform at any p. Additionally, for any
Bp

j1...jm
6= [0], the size of the central-quantizer cell is given by

nnz(Bp
j1...jm) ·∆C . The assumption that the central quantizer is

uniform at every level implies that nnz(Bp
j1...jm

) = const.,for
all Bp

j1...jm
6= [0] with 1 ≤ jm ≤ Jp

m, 1 ≤ m ≤ M .

It can be easily verified that the embedded IAs correspond-
ing to the EMDSQs we proposed in [2], [3], [4] are satisfying
the conditions of the theorem above; hence, they represent
instantiations of the proposed framework.

Consider, in view of simplification, that any of the hyper-
blocks Bp+1

j1...jm
are split into the same number Lp

m along the di-

mension m resulting, at lower level p, in a number
∏M

m=1 Lp
m

of hyperblocks Bp
i1...im

. According to the above, each hyper-
block Bp+1

j1...jm
within M is a block hypermatrix defined by its

blocks Bp
i1...im

as follows: Bp+1
j1...jm

= [Bp
i1...im

]1≤im≤L
p
m

,
1 ≤ jm ≤ Jp+1

m . Therefore, if for the coarser quantization level
(p = P ) JP

m = LP
m, then the side quantizer Qp

m will contain
Jp

m =
∏M

i=p Li
m cells. The recursive splitting of a bi-dimensional

IA is illustrated in Fig. 2.
Consider a block hypermatrix M at level p, of the form:

M = [Bp
j1...jm

]1≤jm≤J
p
m

. The number of blocks Bp
j1...jm

6= [0]
contained in M is determined via the nonzero-blocks operator
nnb(M, p). It is noticeable that the operator nnb(M, 0) is identi-
cal to the operator nnz(M).

Pursuant to this definition and based on the theorem above, for
any of the block hypermatrices Bp+1

j1...jm
= [Bp

i1...im
]1≤im≤L

p
m

,
1 ≤ jm ≤ Jp+1

m , the number of hyperblocks Bp
i1...im

dif-
ferent from the zero matrix is constant, and given by Np =
nzb(Bp+1

j1...j2
, p). Additionaly, at level p = P , NP = nzb(M, P )

represents the number of hyperblocks BP
j1...jm

6= [0] within M.
The total number of indices mapped in each hyperblock Bp

j1...jm

is nnz(Bp
j1...jm

) =
∏p

i=0 Ni. It can be subsequently shown
that the analytical expression of the central EMDSQ for any level



p, 0 ≤ p ≤ P is:

Qp(x) = sign(x)

⌊ |x|
∆C ·

∏p
i=0 Ni

⌋
(1)

The number of partition cells contained in Qp is Jp =
∏P

i=1 Np.

4. REDUNDANCY CONTROL

Denote by Rm the rates and by Dm(Rm) the corresponding side-
description distortions. Also, denote by D0 the central distortion.
In single-description coding (SDC) one minimizes D0 for a given
rate R0. The redundancy is the bit-rate sacrificed by MDC com-
pared to SDC in order to achieve the same central D0 distortion:

ρ =

M∑
m=1

Rm −R0 (2)

From (2) one can deduct the analytical expression of the nor-
malized redundancy:

ρ =

∑M
m=1 Rm

R0
− 1 (3)

In our case, for multiple description embedded quantization,
the corresponding side-description rate is of the form Rm =
log2(

∏P
i=p Li

m) and R0 = log2(
∏P

i=p Ni). Thus, from (3) we
obtain the normalized redundancy:

ρp =

∑M
m=1 log2(

∏P
i=p Li

m)

log2(
∏P

i=p Ni)
− 1 (4)

We can conclude that, for any EMDSQ instantiation, the re-
dundancy is directly dependent on the quantization level p. In ad-
dition, the redundancy can be controlled at each distinct quantiza-
tion level via the Np and Lp parameters, with Np ≤

∏M
m=1 Lp

m.

5. EXPERIMENTS

Performance results for the EMDSQ are presented for a memory-
less Gaussian source with zero mean and unit variance (see Figs. 3,
4, 5). The signal-to-noise-ratio (SNR) measure and the normalized
redundancy - as expressed by (3) - are used in the above mentioned
figures.

In [2] and [3] it was shown that at high redundancies EMDSQ
systematically outperformed the state-of- the-art MDUSQ of [1]
on a broad set of experiments. Fig. 3 shows comparative EMDSQ
and MDUSQ central and side SNR performances for different re-
dundancy levels (0 ≤ ρ ≤ 95). It can be noticed that for ρ = 0
both quantizers (i.e. EMDSQ and MDUSQ) show the same per-
formance; meanwhile as the redundancy increases EMDSQ shows
ever better central and side SNR results.

In order to demonstrate the redundancy control mechanism,
two experiments were performed. In the first experiment - the
results of which are given in Fig. 4 - three instantiations of
EMDSQ (denoted here as Q1, Q2, Q3) at different overall redun-
dancy levels are employed . For the purpose of comparison, for
all three EMDSQ instantiations the corresponding central quan-
tizer at p = 0 has the same number of cells resulting in an equal
overall central distortion. Table 1 indicates the redundancy values
at each distinct quantization level (e.g. Q2 has the overall redun-
dancy ρ = 0.6 and five embedded levels (P = 4) with maximum

8

10

12

14

16

18

20

1.5 2.5 3.5 4.5 5.5 6.5 7.5

Side SNR(db)

C
e
n

tr
 S

N
R

(d
b

)

MDUSQ

EMDSQ

Fig. 3. Comparative side and central SNR performance between
EMDSQ and MDUSQ at side R = 1.2 at different redundancy
levels (0 ≤ ρ ≤ 95) for a memoryless Gaussian source.

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6 7

Rate (bpp)

C
e
n

tr
a
l 
P

S
N

R
 (

d
B

)

      EMDSQ ρ=0.3

 EMDSQ ρ=0.4

EMDSQ ρ=0.9

MDUSQ ρ=0.9
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on Lena image coded with MD-QT codec employing the EMDSQ
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redundancy for the first four levels (ρp = 1, 1 ≤ p ≤ 4) and no
redundancy for the last level (ρ0 = 0)). For the second experiment
- the results of which are given in Fig. 5 - three instantiations of
EMDSQ at the same overall redundancy level are employed . Ta-
ble 2 indicates the redundancy values at each distinct quantization
level for Q1, Q2, and Q3.

Fig. 6 shows the central peak-to-signal-ratio (PSNR) versus
the rate obtained with a practical Multiple Description - QuadTree
(MD-QT) wavelet based coding system - see [9] - incorporating
EMDSQ instantiations operating at different overall redundancies
and MDUSQ of [1]. It is important to notice that for EMDSQ it
is possible to control the redundancy at each distinct quantization
level, while the MDUSQ does not feature this important control
mechanism. Also, this example shows that at the same redundancy
level, EMDSQ outperforms the state-of-the-art on the whole range
of rates.

6. CONCLUSIONS

A new general framework for designing uniform EMDSQ has been
proposed in this paper. All the previously proposed embedded
quantization methods for MDC [2], [3], [4] are seen as instantia-
tions of the proposed framework. The EMDSQ provides fine-grain
refinable descriptions. The conditions to be satisfied by the gener-
alized embedded IA to yield uniform embedded central quantizers
are established. In addition, a control mechanism tuning the redun-
dancy between the descriptions for each distinct quantization level
is proposed, enabling (1) to control the tradeoff between coding ef-
ficiency and resilience to errors, and (2) to improve the resilience



0

5

10

15

20

25

30

35

0 2 4 6 8 10

Rate(H(x))

S
N
R
(d
b
)

centr ρ=1

centr ρ=0.6

centr ρ=0.2

(a)

0

5

10

15

20

25

30

35

0 1 2 3 4 5

Rate(H(x))

S
N
R
(d
b
)

side ρ=1

side ρ=0.6

side ρ=0.2

(b)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

side SNR(db)

c
e
n

tr
 S

N
R

(d
b

)

ρ=1

ρ=0.6

ρ=0.2

(c)

Fig. 4. EMDSQ performance at different overall redundancies for a memoryless Gaussian source (a) Central Rate-distortion (b) Side
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Rate-distortion (c) Side and Central distortion.

p 5 4 3 2 1 0

Q1(ρ = 1.0) 1.0 1.0 1.0 1.0 1.0 1.0
Q2(ρ = 0.6) - 1.0 1.0 1.0 1.0 0.0
Q3(ρ = 0.2) - - 1.0 1.0 0.0 0.0

Table 1. The redundancy value at each level p for the EMDSQ
instantiations from Fig.4.

p 5 4 3 2 1 0

Q1(ρ = 0.25) 1.0 1.0 1.0 0.6 0.4 0.3
Q2(ρ = 0.25) 1.0 1.0 0.4 0.4 0.3 0.3
Q3(ρ = 0.25) 1.0 0.2 0.2 0.2 0.2 0.2

Table 2. The redundancy value at each level p for the EMDSQ
instantiations from Fig.5.

by increasing the redundancy in the important layers of the bit-
stream. Finally, experimental results demonstrate the redundancy
control mechanism and show that EMDSQ instantiations outper-
form the state-of-the-art.
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