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ABSTRACT 
We investigate three closely related approaches to 

employ subspace modeling techniques to digital video 
sequences. The goal for this modeling approach is to 
obtain a compact and faithful representation of the video 
sequence for computer vision applications and image 
understanding. We propose to use a multi-domain 
approach, where the subspace modeling is applied to data 
in the intensity domain (textures) and the motion domain 
(motion vector fields). 

Experiments are described which show that especially 
a combination of motion estimation and subspace 
modeling of motion vector fields using singular value 
decomposition provides interesting results.  
 

1. INTRODUCTION 
 

We present some basic considerations and first 
investigation results for the use of subspace modeling 
techniques applied to image sequences. We will discuss 
how to represent digital video data by rank-reduced 
subspace models effectively. This approach holds some 
promise for solving various video analysis problems as is 
discussed in the article. 
 
1.1. Multi-Domain Modeling of Video Sequences 

Temporal intensity changes of pixels in an image 
sequence create the sensation of a moving picture. For 
image understanding purposes we aim to identify and 
track objects throughout a video sequence.  

The temporal changes of pixel intensities may be 
attributed to the motion of objects in the scene. From a 
purely technical point of view motion of pixels amounts to 
address changes of the corresponding pixels. These  
address changes or, equivalently, the displacement of 
pixels define a domain transform of the intensity function 
I(x,y,t). In the following we refer to this domain transform 
as the motion domain of the video sequence I(x,y,t).  

Alternatively, the temporal intensities changes of 
pixels may be attributed to changes of brightness or color 
of the pixels. Take a blinking street light as an example 
for such a temporal phenomenon. These changes of pixel 
intensities define a range transform of I(x,y,t). In the 
following we refer to this range transform as the intensity 
domain of the video sequence I(x,y,t). 

The notion of multi-domain modeling presented here, 
combines the simultaneous modeling in the motion 
domain and the intensity domain. Note that there is no 

unique split between the two domains as the temporal 
variation of the function I(x,y,t) can be explained as 
variations of intensity only and also in terms of address 
changes, i.e. by motion. 

 
1.2. Reduced-Rank Subspace Modeling 

Singular value decomposition (SVD) and subspace 
estimation techniques in combination with the associated  
low-rank approximation features have been used 
successfully in various fields in signal processing [2], [7] . 
The present modeling approach is based on the hypothesis 
that the function I(x,y,t) can be represented efficiently by a 
combination of subspace models in the motion domain 
and in the intensity domain. A subspace model is 
considered to be efficient, if the subspace dimension 
necessary to faithfully explain the data has a low 
dimension. The multi-domain subspace model is 
considered to be efficient if the sum of the individual 
subspace dimensions is minimum. The minimality of the 
multi-domain subspace model provides a means to resolve 
the ambiguity of modeling a video sequence in the 
intensity and the motion domain. 

Subspace models include the option to determine a 
low-rank approximation of the original data which serves 
as a mechanism to reduce the noise in video data. 

The feasibility of such an approach has been 
investigated and the pertaining experimental results are 
presented for different methods of subspace modeling. 

 
1.3. Singular Value Decomposition (SVD) 

The singular value decomposition (SVD) of a m×n 
matrix A is given in terms of the factorization ([3], [6]) 
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with unitary matrices U  and V (U*⋅U=1, V*⋅V=1 ) and the 
diagonal matrix Σ, which contains the singular values σi in 
decreasing order, i.e. σ1 ≥ σ2 ≥ … ≥ σp, and rank(A) = p.  

The columns of V, i.e. the vectors v1,…,vp constitute 
an orthonormal basis for the row space of A, while the 
columns of the matrix U, i.e. the vectors u1,…,up form an 
orthonormal basis of A’s column space. By selecting the 
first f singular values (f < p) and the associated singular 
vectors u1,…,uf  and v1,…,vf results in the best rank-f 
approximation of the matrix A. This approximation is 
denoted by the matrix Â. 



2. SUBSPACES ASSOCIATED WITH VIDEO 
DOMAINS 

 
The set of all pixels in a sampled video sequence 

I(x,y,t) forms a 'video cube' which is given by the vertical 
x ={1, 2,…, nv}, horizontal y ={1, 2,…, nh}, and temporal 
index t={1, 2, ... , nt}, where nv and nh denote the number 
of pixels in vertical and horizontal direction, respectively. 
The integer nt denotes the number of frames in a given 
video sequence. In the following we will restrict our 
discussion to black and white video sequences by working 
on the luma component of color video only. The extension 
to color video is straightforward. 

 

 
Figure 1: Subspace Modeling for Video data 

2.1. Subspace in the Intensity Domain 
Individual frames can be considered as vectors of 

dimension nv ⋅ nh. All pixel values of a frame at time 
instant t are reformatted into a row vector  

 1,1, 1,2, 2,1, 2,2, , ,[ , , , , , , ]
v ht t t t t n n ti I I I I I= … … .  (2) 

The set of all video frames in a sequence form an nt-
dimensional subspace of the linear vector space of 
dimension nv ⋅ nh, which will subsequently be referred to 
as the sequence space X. We stack all reformatted frames 

of a specific sequence as the rows of a video sequence 
matrix X of dimension nt × (nv ⋅ nh) 
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We can easily identify that the sequence space X  is 

spanned by the rows of the sequence matrix X. We can 
compute an orthonormal basis for the sequence space 
X using the singular value decomposition X=U⋅Σ⋅V* such 

that X is given in terms of the rows of the matrix V*.  

2.2. Subspace in the Motion Domain 
In order to apply subspace modeling in the motion 

domain we need to account for the intensity changes that 
are caused by motion of objects or camera motion. 

There exist various techniques to extract motion 
information from video sequences. In this investigation 

we compute dense motion vector fields using e.g. a Horn 
& Schunck type computation of optic flow [4].  

We employ telescopic motion estimation, as illustrated 
in Figure 2. The frame in the middle of a group of pictures 
is chosen as the reference frame. Motion vector fields are 
computed for each frame in the group of pictures with 
respect to the reference frame. For this investigation the 
size of the group of pictures has been set to 10 frames. 

 

 
Figure 2: telescopic motion compensation 

The resulting motion vectors fields are given in terms 
of the common coordinate system of the reference frame.  

Motion vector fields consist of two components, a 
vertical and a horizontal component of the motion vectors. 
Both components of a motion vector can be combined to 
form a complex number, where the horizontal and vertical 
components of the motion vector for each pixel are 
represented by the real part and the imaginary part of a 
complex number. This is denoted by  

 
, , , ,, , := + ⋅

v h t v h t

v h
v h tD D j D , (4) 

where the letter D has been chosen with reference to the 
displacement of pixels. 

Similar to the reformatting procedure for the video 
frames in the preceding section we reformat a single 
motion vector field to generate a complex-valued row 
vector  

1,1, 1,2, 2,1, 2,2, , ,[ , , , , , , ]
v ht t t t t n n td D D D D D= … … . (5) 

The set of all motion vector fields dt corresponding to 
a video sequence form an nt-dimensional subspace of the 
linear vector space of dimension nv⋅nh, which will 
subsequently be referred to as the motion space M. We 

stack all reformatted motion vector fields of a specific 
sequence as the rows of a video sequence matrix M of 
dimension (nt-1) × (nv ⋅ nh) 
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The telescopic motion data for natural video 
sequences are expected to span a low dimensional vector 
space. This is based on the notion of temporal smoothness 
of motion vector fields due to the inertia of physical 
objects moving through space.  

 



3. EXPERIMENTAL RESULTS 
 

In this section we present some experimental results to 
evaluate the validity of the conjectures concerning the 
dimensionality of the video and motion subspaces. To this 
end we use the first ten frames of the sequences 'Akiyo', 
'Foreman', 'Mobile', and 'Stefan' in CIF resolution.  

3.1. Direct Intensity Modeling 
The singular values for all four video test sequences, 

which are computed by applying the SVD to the 
corresponding video matrix X are displayed in Figure 3. 
From this plot it can be seen that a good energy 
compaction is achieved only for sequences with little or 
no motion. The row vectors vi

* represent Eigen images of 
the sequence. The first three Eigen images of the sequence 
'Akiyo' are shown in Figure 4. The first Eigen image 
represents the average of the sequence. The second and 
the third Eigen image are dominated by the motion of the 
eyes and the mouth, respectively. The temporal 
coefficients in Figure 5 show the contribution of the 
different Eigen images to the individual frames. The 
change in the coefficients tells a lot about the sequence. 
E.g. there is obviously less eye movement from frame 1 to 
4 than there is between frame 4 and 6.  

3.2. Modeling of Motion Compensated Intensity 
In this experiment, the images in the sequences are 

motion compensated with respect to the reference frame. 
The motion compensated frames constitute the rows of the 
sequence matrix X. X is subsequently factorized by SVD.  
Figure 6 depicts the resulting singular values. The plot 
shows a substantially improved energy compaction in 
comparison to the result shown in Figure 3. That is 
equivalent to the observation that the subspace of motion 
compensated intensities has a lower dimensionality and 
hence can be faithfully represented with a smaller number 
of basis vectors. The accuracy of the motion estimation 
and compensation technique may have an impact on the 
achievable modeling quality [8]. 

3.3. Modeling in the Motion Domain 
Subspace modeling in the motion domain accounts to 

computing the SVD of the motion matrix M. Plotting the 
singular values according to this modeling approach 
produces singular values, which are plotted in Figure 7. 
This plot demonstrates that a high degree of energy 
compaction is achieved, which implies a low 
dimensionality of the corresponding subspace of motion. 
Figure 8 shows the first Eigen vectors of motion 
belonging to the sequence ‘Akiyo’. The first Eigen vector 
mainly corresponds to movement of the eyes, the second 
Eigen vector mainly captures the movement of the mouth. 
 Moreover, important information about the sequences 
becomes visible, as the amount of motion and importance 
of different independent motion modes in the individual 

sequences can easily be derived from the singular values 
and the corresponding Eigen vectors. 

 

  
Figure 3: Singular values for direct intensity modeling 

 
Figure 4: Eigen images of sequence corresponding to 

the first three singular values ‘Akiyo’  

 
Figure 5: Temporal Coefficients for the first three Eigen 

vectors of the sequence ‘Akiyo’ 

 
 



 
Figure 6: Singular values for motion compensated 

intensity modeling 

 
Figure 7: Singular values for modeling in the motion 

domain 

 

Figure 8: First and second Eigen vectors of motion 
modeling for sequence ‘Akiyo’ 

 

4. TARGET APPLICATION SCENARIOS 
 

Various technical challenges associated with the 
analysis of image sequences may benefit from the 
presented approach. The target applications include video 

analysis, computer vision tasks such as object recognition 
and segmentation, content-based search and retrieval of 
video material, computer animation, content based 
interactivity as well as multi sensor data fusion.  

All application benefit from the ease of computation, 
the compaction of data, that comes along with possibly 
meaningful weightings (i.e. singular values). 

Followed by a soft decision image analysis stage, the 
presented approach might by used to extract key 
information in a sensible way for multi sensor 
applications. 

5. CONCLUSIONS 
 

The information in a video sequence can be 
compacted by means of simple matrix computations in 
two domains, i.e. the intensity domain and the motion 
domain. Modeling in the intensity domain, it can be 
shown that a faithful representation with a low 
dimensional subspace works only for sequences with little 
motion. Motion compensation has been shown to improve  
the subspace modeling in the intensity domain.  

However, the representation of video by describing the 
motion compensated texture seems incomplete. The 
motion information may also be represented in terms of a 
low dimensional subspace model. The experiments 
described in this paper also prove that dense motion 
vector fields can be described in a compact manner by 
subspace representation.  
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