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ABSTRACT 
 
Content-based video retrieval technology holds the key to 
the efficient management and sharing of video content 
from different sources, across different platforms, and 
over different communication channels. In this work we 
present a fast retrieval algorithm based on matched 
filtering utilizing the video sequence trace characteristics 
in the principal component space. Experimental 
techniques to address scale (spatial and temporal) issues, 
as well as, noise and other possible distortions, such as 
frame dropping, are discussed.  Experimental results 
demonstrate the effectiveness of the proposed approach.   

 

1. INTRODUCTION 
 

With the proliferation of digital video capturing, 
storage and communication devices, the amount of 
information in video form is growing rapidly in personal 
entertainment, security, and military applications. To 
effectively share and manage video content presents a 
technical challenge to the existing information 
management systems. Semantic features based 
management systems require substantial amount of  
manual work  for labeling  the content and is therefore in 
general not practical.  

Consider the following example representing an 
application addressed by this work.  A mobile phone user 
has just watched a low visual quality (e.g., QCIF size, 
10fps), short (e.g., 5 sec) segment of a soccer game from 
some unknown source.  S/he wants to now watch the  
complete game in SDTV format from her  personal soccer 
game video collection, or some content provider’s 
collections. The system will therefore need to search a 
database based on this 5-sec segment and return the 
locations of the full size program,  if it exists. The 
semantic information is clearly not present in the querying 
segment. The matching has thus to be “content-based”. In 
addition, the variance in temporal and spatial scale, as 
well as, the noise and distortion incurred during the 
communication must also be addressed.  

Content-based retrieval approaches have been 
investigated extensively by many researchers [1]-

[4][7][9]-[12].  Such approaches are typically based on 
the visual features of a video frame and a similarity metric 
based on these features  is typically used. Visual features 
commonly used are color, shape, texture, and motion. 
Drawbacks of such approaches are   the computational 
expense associated with the extraction and matching of 
visual features,  and the  fact that the video sequence is 
treated as a collection of images and the temporal 
behavior therefore of the sequence is not addressed. The 
retrieval performance can also be negatively affected by 
the scale variance, noise, and distortion  of the video 
content. 

In the proposed approach video sequences are viewed 
as temporal traces in some high dimensional space.   Each 
video frame is reduced to a point in its Principal 
Component (PC) [5][8] space.  The trace over time of a 
video sequence in this space   should provide sufficient 
information to differentiate it from other sequences. In the 
PC space, the matching of sequences becomes the 
problem of matching the geometry of the traces; when the 
dimensionality of the PC space is small, this can be done 
efficiently.  We more specifically propose the use of the 
differential trace (an one-dimensional quantity 
irrespectively of the dimensionality of the PC space) for 
matching and retrieval.  Implementation details are 
described to further speed up the retrieval but also address 
spatial and temporal resolution differences between the 
query and the database video.     

The paper is organized into the following sections. In 
section 2 we present the method for computing the trace 
of a video sequence in its principal component space and 
the matching method. In section 3 we discuss 
implementation issues, in section 4 we present simulation 
results, and in section 5 we draw conclusions and outline 
our future work.  
 
2. PRINCIPAL COMPONENT SPACE TRACE AND 

MATCHING METRICS 
 
2.1. Principal Component Space Projection 
 

Let n denote the dimensionality of a frame, i.e., a video 
frame fj belongs to Rn.  The Principal Component Analysis 
(PCA) [8] finds an nxd transformation Qd, with d 
orthogonal unit nx1 vectors, that maps the frames of the 



video sequence fj to a low d-dimensional (d<n) Principal 
Component space, that is,  
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where f0 is the average of the frames observed.  Notice 
that Q is sample dependent and the accurate computation 
of Q requires large number of samples.  
For d=2, the mapping of the video sequence frames into  
2-dimensional plane points can be visualized. Examples 
of mappings for the “foreman” sequence is plotted in Fig. 
1a, and certain “mixed” sequences consists of  segments 
from the “football”, “tennis”, “container” and “car phone” 
sequences are illustrated in Fig. 1. 
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(a). “Foreman” sequence  
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(b). “Mixed” sequences 

Figure 1. Sequence traces in the 1st-2nd principal component 
space 

The trace of the sequence is obtained by connecting 
frames in time sequence. Notice that the traces of different 
clips occupy different areas in the 2D space, and have 
different trace geometry.  
 
 

2.2. Matching Metrics 
 

It is difficult to visualize higher dimensional traces. A 
scalar feature of traces, the differential trace step, can be 
of use.  It is defined by 

1

0, 1

| |, 1j d d
j j

if j
l

x x if j−

=  =  − >  
   (3) 

Let 0 1 1[ , , , ]mL l l l −= L denote the differential trace of an 

m-frame sequence. The differential trace for the 
“foreman” sequence is shown in Fig.2, for 2- and 4-
dimensional cases. It appears that the differential trace is 
relatively invariant with respect to the dimensionality d of 
the space for d greater than 2.  This is because most 
energy is captured in the first 2 dimensions. 
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Figure 2. “foreman” seq trace step length plots 

Let us denote by ( , )a bd L L  the distance between two 

differential traces La and Lb of length m.  For example, if 
the L2 norm is used, is computed as,  
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The differential trace can now be used for retrieval.  
That is, for an m-frame querying video clip, with 
differential trace Lq, its best match is found in a database 
according to  
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trace of a database sequence of length m starting at time 
instance k.  The operation in  (5) can be implemented 
efficiently with a matched filter-like structure, with Lq 
convolving with Lb and detecting the spike in the output at 
location k*.  This now becomes a very fast retrieval 
algorithm, since no visual features matching operation is 
needed (assuming the features have been extracted), but  a 
scalar operation instead.  

The search time can be further reduced if we assume 
that a video shot segmentation [6] is performed first for 
the sequences in the database.  The trace of each shot then 
can be bounded by a hyper-parallelepiped.  If the 
bounding parallelepipeds of the traces of the querying 



sequence and the shot do not intersect, then no matching 
of the corresponding differential traces (5) is attempted.  
Clearly such an approach is independent of the 
dimensionality of the PC space.   

Because of the relatively low dimensionality of the 
PCA trace representation of the video shots, effective 
indexing schemes like R*-Tree [13] can be utilized to 
improve the retrieval efficiency.  

Other methods like direct matching of the points in the 
PCA space, projection of the querying video clip onto the 
parameterized curve representation of the database clips 
can also be utilized as retrieval solution.  

 
3. IMPLEMENTATION CONSIDERATIONS  

 
As mentioned in section 1, the querying video clip very 
often is of different spatial and temporal resolutions than 
the clips in the database.  To address the spatial resolution 
incompatibility (plus additive noise issues) we low-pass 
filter and down-sample both the querying and the database 
sequences. That is, they are all brought down to a 
common w1xw2 resolution before applying PCA, 

1 2' ( ( ))j w xw jf D LP f=     (6) 

Typical common resolutions used for (6) are 8x8, 12x12, 
or 16x16. This down-sampling process can also improve 
the accuracy of the PCA process (2) with limited samples, 
since it reduced the data space dimension.  

The differences in temporal resolution between 
querying and database sequences can be addressed by pre-
computing or computing on the fly the traces and 
differential traces of the sequences in the database at 
different frame rates, like for example, 10fps, 15fps, 
20fps, 25fps and 30fps. A related issue to the differences 
in temporal resolution is when there are random frame 
drops, due, for example, to transmission errors. The 
missing frames need to be interpolated in this case before 
the differential trace is computed. We perform linear 
interpolation in the PC space. 
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Figure 3. Interpolation of missing frames 

 

Although more sophisticated interpolation methods 
could be employed, we experimentally found out that 
linear interpolation is adequate for retrieval purposes.  An 
interpolation example for the first 20 frames of the 
“foreman” sequence with missing frames 3, 6, 11, 16 is 
shown in Fig.3. The upper plot in Fig.3 depicts the trace 
interpolation result in the 2D space, while the lower plot 
shows the corresponding interpolated differential trace Lk.  

 
4. SIMULATION RESULTS 

 
In our simulations we low-pass filter and average down 

the frames to 8x8 thumbnail images before the PCA 
process. The eigen-values and the 1st and 2nd component 
basis vectors of the “foreman” sequence are plotted in Fig. 
4.  
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Figure 4. Principal component basis vector 

For other thumbnail frame sizes like 4x4, 16x16 and 
32x32, the eigen-values demonstrate the same tendency of 
capturing most energy in 2-4 dimensions. To learn the 
principal component space with 2-4 dimensions for all 
sequences, we collected data from more than 3000 frames 
and find the optimal projection Q from this data set.  For 
different thumbnail frame sizes, the eigen-vectors are 
different but the sequence traces have similar geometry, as 
illustrated in Fig. 5. for the “foreman” sequence.   

60 80 100 120
-40

-30

-20

-10

0

10

1st
 c

om
po

ne
nt

2nd component

4x4

 1
 101

 201

 301

100 150 200 250
-60

-40

-20

0

20

40

1st
 c

om
po

ne
nt

2nd component

8x8

 1

 101

 201

 301

150 200 250 300 350 400
-50

0

50

100

150

200

1
st

 c
om

po
ne

nt

2nd component

16x16

 1

 101

 201

 301

300 400 500 600 700 800
0

100

200

300

400

500

1
st

 c
om

po
ne

nt

2nd component

32x32

 1

 101

 201

 301

 
Figure 5. “foreman” sequence PCA trace with different 

thumbnail image size 



   To demonstrate the effectiveness of the proposed 
approach we set up a small video database of 1600 frames 
by manually mixing together different sequences. We set 
up 4 queries from QCIF sized clips of the “container”, 
“tennis”, “carphone” and “football” sequences, each of 20 
frames in length. Their correct matching locations in the 
database are frames (i.e., time instances) 160, 380, 1030, 
and 1330.  
   Retrieval results are illustrated in Fig. 6. Results with a 
noise-free query are shown in the upper plot, while results 
with queries corrupted by additive Gaussian noise and 
dropped frames are shown in the lower plot  (the amount 
of distortion is shown in Table 1.  The relevance values, 
i.e., the distance values in (4) normalized to [0,1] by an 
exponential function exp(-ad) are shown, with a=0.05.  
Notice that in both cases the correct matching locations in 
the database are found, although in the noisy case the 
retrieval relevance values are less than 1.0. This increases 
the probability of false matches.  
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Figure 6. Retrieval results 

  
Sequence SNR (dB) Drop Rate     Relevance 
“Container” 13.13 0% 0.99 
“Tennis” 0 25% 0.88 
“Carphone” 16.98 10% 0.81 
“Football” 13.13 25% 0.11 

Table 1. Noisy retrieval results  
 

The performance values of the experiment with the 
noisy queries are shown in Table 1. Notice that the SNR 
values represent the noise level in the PC space 
representation, not the original noise level in the frames. 
The retrieval performance seems to be more sensitive to 
the percentage of the dropped frames than the spatial 
noise. 
 

5. CONCLUSION AND FUTURE WORKS 
 

In this paper we presented a new content-based video 
clip retrieval solution. The video frames are reduced to 
points in low (2~4) dimensional space and the retrieval is 
based on matching the scalar differential sequence trace 

function. Our solution is fast and robust to noise, 
distortions and differences in spatial and temporal 
resolutions between querying and database sequences.  
The proposed solution can be useful in a wide range of 
practical applications that require real time response to 
video queries.  

Work is underway to find out under what conditions the 
operations in (6) coupled with the PCA preserves the trace 
geometry. We are also investigating efficient indexing by 
utilizing the geometric properties of the trace of video 
clips in a very low dimensional space, and the template 
matching based solution for missing frames when time 
stamp information is not available.  
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