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ABSTRACT

The binary Distortion Compensated Dither-Modulation (DC-
DM), which can be regarded to as a baseline for quantization-
based data-hiding methods, is rigorously analyzed. An ac-
curate procedure for computing the exact probability of bit
error is given, as well as the optimal weights in a newly
proposed decoding structure, for significant improvements
on performance. The results are particularized for a JPEG
compression scenario which allows to show their useful-
ness. Also a comparison between the mean square error and
perceptual distorsion measurements is done. Experimental
results validating the proposed theory are presented.

1. INTRODUCTION.

Although quantization-based methods have been presented
since the beginnings of watermarking, it was not until very
recently that the idea was revisited from a sound theoreti-
cal perspective in the form of a data hiding scheme known
as Quantization Index Modulation (QIM) [1], which hides
information by constructing a data-driven set of quantizers.
This method was later connected to an old paper by Costa
[2] to realize that by adding back a fraction of the quanti-
zation error, performance could be significantly improved.
This scheme was thus termed Distortion Compensated QIM
(DC-QIM).

The original proposal of DC-QIM can be adapted for
using many off-the-shelf vector quantizers. In particular,
a considerable attention has been paid to the special case
called Dither Modulation (DM) [1] —or formally equiv-
alent schemes [3], [4]—, which has the advantage of its
simplicity. Here we consider a (binary) multidimensional
extension of Distortion Compensated DM (DC-DM) which
can be regarded as a baseline for more sophisticated QIM
schemes [1].

Throughout the paper we will assume that the host im-
age coefficients are arranged in a vectorx, so that the wa-
termarked image can be written asy = x + w, being
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w the watermark. The information to be hidden is repre-
sented by a vectorb with N binary antipodal components,
i.e., bj = ±1, j = 1, · · · , N . Following most existing
schemes, we will consider that thej−th bit is hidden in a
key-dependent set of coefficientsSj with cardinalityLj , for
all j = 1, · · · , N . The total set of coefficients devoted to
data hiding is denoted byS ,

⋃N
i=1 Si. For convenience,

wj stands for the vector comprising those samples with in-
dices belonging toSj . We will also assume that prior to de-
coding the watermarked image is sent through an additive
probabilistic noise channel, so that the image at its outputz
can be written asz = y + n = x + w + n, wheren is
the noise vector. By virtue of the pseudorandom choice of
the indices inS we may assume that the samples inn are
also mutually independent, with zero mean and variances
σ2

ni
, i ∈ S.
To measure the impact of the attack, we will follow the

popularwatermark-to-noiseratio (WNR), defined as WNR,
10 log10

∑
i∈S E{w2

i }/
∑

i∈S σ2
ni

. Since it is a MSE mea-
sure, it does not take into account the characteristics of the
Human Visual System (HVS), so we will study also a per-
ceptual distortion measurement, as that proposed in [5].

The paper is organized as follows: In Sect. 2, we will
introduce the basic concepts of DC-DM whereas its per-
formance analysis and numerical computation is studied in
Sect. 3. Sect. 4 is devoted to JPEG compression and Sect.
5 to perceptual measurements. Finally, in Sect. 6 experi-
mental results are presented and in Sect. 7 conclusions are
expounded.

2. BASIC CONCEPTS OF DC-DM.

Structured quantization-based methods ([3], [1]) hide infor-
mation by constructing a set of vector quantizersQb(·),
each representing a different codewordb. So, given a host
vectorx and an information codewordb, the embedder con-
structs the watermarked vectory by simply quantizingx
with Qb(·), i.e. y = Qb(x).

Here we will analyze the simplest (and most studied)
implementation of these methods, the binary Distortion Com-
pensated Dither Modulation (DC-DM) [1]. In the binary
DC-DM the watermark samples in the setSj , j = 1 · · · , N ,



are given bywj = νjej , i.e. theL-dimensional quantiza-
tion errorej , Qbj

(xj)− xj , weighted by an optimizable
distortion-compensating parameterνj , 0 < νj ≤ 1. Then,
we will have

yj = Qbj
(xj)− (1− νj)ej , j = 1, · · · , N (1)

The uniform quantizersQ−1(·) and Q+1(·) are such
that the corresponding centroids are the points in the lattices

Λ−1 = 2(∆1Z, · · · ,∆LZ)T + d

Λ+1 = 2(∆1Z, · · · ,∆LZ)T + (∆1, · · · ,∆L)T + d (2)

with d ∈ RL a key-dependent dithering vector. Note that,
in contrast to [1], our setup allows for different quantiza-
tion steps to be used in each dimension to better account for
perceptual constraints.

If the quantization step in each dimension is small enough,
we can consider that the quantization errorei in each di-
mension will be uniformly distributed between[−∆i,∆i),
being2∆i the quantization step. Thus, the embedding dis-
tortion in each dimension will be E{w2

i } = ν2
j ∆2

i /3.
Finally, decoding is implemented as

b̂j = arg min
−1,1

{(
zj −Qbj

(zj)
)t

Bj

(
zj −Qbj

(zj)
)}

,

j = 1, · · · , N. (3)

whereBj = diag(βj1/∆2
j1

, · · · , βjL
/∆2

jLj
) andSj = {j1,

· · · , jLj
}. These weighting vectorsβj allow to improve

decoding when additional information about the noise pdf is
available, and are dealt with in Section 3. On the other hand,
the normalization by∆i in thei-th dimension is reasonable
if one thinks that noise variance will be roughly proportional
to ∆2

i to reduce the perceptual impact of the attack. For
simplicity, in the next section we will analyze the case in
which no weights other than the normalization by∆i are
used, that is,βi = 1. The analysis given here can be readily
extended for an arbitrary weights vector.

3. PERFORMANCE ANALYSIS AND NUMERICAL
COMPUTATION.

To analyze the performance of this scheme in terms of the
bit error probability (Pe), we will define

ui , zi −Qbj
(zi)

= Qbj
(xi)− (1− νj)ei + nj −Qbj

(zi)
= 2l∆i − (1− νj)ei + ni (4)

for all i ∈ S and some integerl. Sinceui is a quantiza-
tion error generated by a uniform quantizer of step size2∆i,

thenui must belong to[∆i,∆i), andl in (4) takes the ap-
propriate value so that this is accomplished. Consequently,
the pdf ofui can be written as

fui
(ui) ={ ∑∞

l=−∞ fu′
i
(ui − 2l∆i), ui ∈ [−∆i,∆i)

0, otherwise
(5)

whereu′i , ni − (1− νj)ei, is a random variable with pdf

fu′
i
(u′i) = fni

(u′i) ∗
1

(1− νj)
fei(u

′
i/(1− νj)) (6)

The folding effect in (5) can be seen as a aliasing phenomenon,
due to the periodicity of the lattices.

To follow a strategy similar to the one described in [6]
and given (3) withβi = 1, we will definev as the vector
with componentsvi , ui/∆i, i = 1, · · · , Lj , so we can
write the bit error probability for thej-th hidden bit as

Pe(j) = P{‖v′j‖2 > ‖v′j − (1, · · · , 1)T ‖2}

= P

∑
i∈Sj

v′i > Lj/2

 , (7)

wherev′ is an auxiliary random vector with independent
components such thatv′ , |v| with pdf

fv′
i
(v′i) ,

{
∆i[fui

(v′i∆i) + fui
(−v′i∆i)], if 0 ≤ v′i ≤ 1

0, otherwise
(8)

If we definerj ,
∑

i∈Sj
v′i, then the computation ofPe(j)

is equivalent to integrating the tail of the pdf ofrj from
Lj/2, but since thev′i are independent random variables,
the pdf ofrj is just the convolution of the marginal pdf’s of
v′i, i ∈ Sj . An efficient way to compute it is with the DFT
method proposed in [7].

If the cardinalityLj of each subsetSj is large enough
and under some additional conditions discussed in [6], it is
possible to resort to the Central Limit Theorem (CLT), to
write that

Pe(j) ≈ Q

 1
2

∑
k∈Sj

βk −
∑

k∈Sj
βkE{v′k}√∑

k∈Sj
β2

kVar{v′k}

 (9)

whereQ(x) , 1√
2π

∫∞
x

e−
τ2
2 dτ .

In [7] the optimal values for the decoding weightsβi

were also introduced

β∗i = K ·
(

1
2 − E{v′i}

)
Var{v′i}

(10)

whereK is an irrelevant positive real constant, sinceβ∗ can
be scaled without any impact on performance. Also, it is



very interesting to note that some of theβ∗i may be negative.
This will happen when the random variablev′i is such that
E{v′i} > 1/2, which may occur for large distortions.

Finally, as it can be inferred from (10), in order to com-
pute the optimal decoding weights, knowledge of E{v′i} and
Var{v′i} is required. Note that due to the aliasing and trun-
cation effects that show up in the construction ofv′, this
information is not directly derivable from the first and sec-
ond order moments of the noise random variable.

4. JPEG COMPRESSION.

In the previous development we have assumed that the noise
n is independent ofx. This is clearly not the case if the
attack is a coarse quantization, like the popular JPEG com-
pression, which is supposed to be one of the most likely
unintentional attacks. In this section we develop a method
for estimatingPe for a given quality factor.

Assuming the bits to transmit are equiprobable, and due
to the symmetry of the JPEG compression, we will concen-
trate in the case whenb = −1, without loss of generality.
Given a JPEG quantization stepδi corresponding to thei-th
dimension, we are interested in computing the probability
associated to each JPEG centroid, noting that this probabil-
ity will depend not only on the pdf of the host image (here
assumed to be Laplacian with parameterλ) but also on that
of the watermark. To that end, we have to determine the
limits of each quantization bin; the DC-DM centroid asso-
ciated to the k-th JPEG bin with limitsa±ik

= kδi ± δi/2
(the upper or lower limit, depending of the sign, in thei-th
dimension) is

Q−1(a±ik
) = di + 2∆i · round

(
a±ik

− di

2∆i

)
(11)

so the offset between the JPEG centroid and the DC-DM
centroid isey(a±ik

) , a±ik
− Q−1(a±ik

). This offset corre-
sponds to the watermarked image and it can be shown to
map back into the host image as

ex(a±ik
) =

min{max[ey(a±ik
),−(1− νj)∆i], (1− νj)∆i}

(1− νj)
,

for all i ∈ Sj , j = 1, · · · , N . Therefore, if we defineγ±jk
,

Q(a±jk
)+ex(a±jk

), we can see that it corresponds to the upper
(lower) limit of the JPEG quantization bin for thek-th JPEG
centroid in thei-th dimension of the host image. Now we
can compute the probability of occurrence for this centroid
as

Pik
= P (xi ≤ γ+

ik
)− P (xi ≤ γ−ik

) (12)

with

P (xi ≤ τ) =
{

1
2eλiτ , if τ ≤ 0
1− 1

2e−λiτ , if τ > 0 (13)
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Fig. 1. Watson’s perceptual distortion (Dyz) andPSNRyz ver-
sus WNR for DC-DM(L = 10 andν = 0.5) with uniform noise.

The parameterλj for the Laplacian distribution can be esti-
mated using the maximum likelihood criterion.

Notice thatPik
plays the same role asfu′

i
in 5. Once

we know the probability of a representative set of JPEG
centroids, it is necessary to “fold” them onto the interval
[−∆i,∆i) as in (5), and then follow a similar strategy to
that developed in the previous section to computePe(j) by
convolving the pdf’s of the JPEG centroids in each dimen-
sion. In our practical implementation we have used the DFT
method introduced in [7].

5. PERCEPTUAL MEASUREMENTS.

Although measurements based on square error are widely
used, there is also a large number of authors who have crit-
icized it and have claimed the use of a perceptually-based
measurement (see e.g. [8], [9] or [10]).

In this section we provide a comparison between the
WNR, the Peak Signal to Noise Ratio (PSNR) and the per-
ceptual measurement defined by Watson in [5], which is re-
lated to Ahumada’s ideas in [11]. With this objective, we
have watermarkedLenawith size256× 256 and compared
the WNR with Dyz and PSNRyz, i.e. Watson’s distor-
tion measure betweeny andz and the PSNR, respectively.
Since the embedding method is always the same, we are
interested in comparing the distortion that the attacker is in-
troducing, by using different measurements. In this case we
have varied the WNR from−10dB to+10dB, withL = 10,
ν = 0.5 and uniform noise proportional in each coefficient
to the corresponding JPEG quantization step for a Quality
Factor of80. Applying Parseval’s Theorem to the bidimen-
sional DCT, it can be shown that the power of the attack in
the DCT domain, where the WNR is measured, is is iden-



tical to that in the spatial domain, wherePSNRyz is com-
puted, so it follows that the relationship between the WNR
and thePSNRyz is linear. Nevertheless the relation be-
tween the WNR andDyz is quite involved. First of all, let
us define:

dijk , eijk/mijk (14)

whereeijk is the difference betweeny andz in theij-th fre-
quency for thek-th block andmijk is the masked threshold
for that coefficient. Ifeijk is a random variable whose vari-
ance is proportional toDc ,

∑
k∈Sσ2

nk
, sincemijk does

not depend onDc, we can define certainrijk invariant with
Dc, in such a way that

dijk =
√

Dcrijk (15)

so, following Watson the spatial error pooling will be com-
puted as,

pij =

(
B∑

k=1

|dijk|βs

)1/βs

=

(
B∑

k=1

|
√

Dcrijk|βs

)1/βs

(16)

beingB the number of8× 8 blocks.1 Therefore,

log10 pij =
1
2

log10(Dc) +
1
βs

log10

(
B∑

k=1

|rijk|βs

)
(17)

For the parameters proposed in [5]Dyz = maxij pij , so
20· log10(Dyz) will be proportional to WNR, as can be seen
in Fig. 1. Also from (17) we can see that this curve will be
shifted depending on the p.d.f. of the noise and the rela-
tive variances among its coefficients. Thus, we can think of
computing the largest modification of the host signal that is
constrained to yield a given perceptual distortion. Applying
Lagrange’s multipliers we can write:

ϕij(eijk) =
B∑

k=1

e2
ijk − λ

[
B∑

k=1

e4
ijk

m4
ijk

−K

]
(18)

where the rightmost sum represents the perceptual distor-
tion for theij-frequency. So (18) yieldse2

ijk
∗ = Kijm

4
ijk,

with Kij a proper constant. A similar development could
be done for the distortion due to the embedding process.
So this formula will be useful also for computing the wa-
termark with the largest variance constrained to produce a
given perceptual distortion.

6. EXPERIMENTAL RESULTS.

In order to validate the analytical results presented hereto-
fore, we have watermarked the imageLenawith size256×

1For a full comprehension of these expressions, the reader is refered to
Watson and Ahumada’s papers ([5]-[11]).
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Fig. 2. BER versus WNR for DC-DM(L = 10 andν = 0.5)
with additive noise proportional to JPEG with QF = 85.

256 in the DCT domain taking into account the perceptual
thresholds described in [11] and we have represented the
BER vs. WNR curves for different noise distributions and
decoders. First of all (Fig. 2), we have studied additive noise
attacks, with both uniform and Gaussian distributions, and
with variances which depend for each DCT coefficient on
the corresponding squared quantization step used in JPEG
compression with a quality factor (QF) of 85. The resulting
noise is scaled in order to work with different WNR oper-
ating points. The theoretical curves for the uniform case
correspond to using (9), while for Gaussian noise the DFT
technique explained in Sect. 3 was employed. Fig. 2 also
plots the upper bound previously published in [6]. For the
uniform case, Fig. 2 clearly shows the improvement on per-
formance that results when the optimal decoding weights in
(10) are used. The slight difference between empirical and
theoretical results is due to the non-uniformity of the image
within the quantization step. This also explains why that
difference is larger when the WNR increases.

In Fig. 3 we depict the BER vs. WNR when the same
image is compressed with QF’s ranging from 60 to 90, com-
paring the empirical results with the analytical ones obtained
by following the procedure described in 4. The results ob-
tained show that binary DC-DM performance are very ac-
curately predicted by our theory.

7. CONCLUSIONS

In this paper we have presented a theoretical analysis for the
binary DC-DM data hiding method, which can be consid-
ered as a reference for other more sophisticated quantization-
based schemes. An accurate analysis was lacking in the data
hiding literature and only rough upper bounds were avail-
able.

The procedure here given not only allows to assess be-
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Fig. 3. BER versus WNR for DC-DM(L = 10 andν = 0.5)
with JPEG compression with QF between 60 and 90.

forehand the bit error rate performance of the DC-DM method,
but to improve the detector by exploiting any available knowl-
edge about the noise joint pdf. JPEG case has been treated
here in some detail.

Finally, we have claimed the use of perceptual distortion
measures replacing typical squared error measures which do
not take into account the HVS’ characteristics.
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