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ABSTRACT
We propose a framework that combines active appearance
models and a particle filter-like step to realize robust face
and facial feature tracking. The developed framework aims
at retaining the strengths of deterministic and stochastic
optimization techniques with a statistical texture model.
Adapting each frame consists of three steps. First, the
adaptation utilizes a gradient descent algorithm based on
the reconstruction error (Distance-from-feature-space).
Second, a stochastic diffusion of the solution is then
performed and the Maximum Likelihood solution is chosen
(Distance-in-feature-space and Distance-from-feature-
space). Third, the ML solution is refined using a gradient
descent algorithm. Comparisons with a simple gradient
descent method demonstrate the efficiency and robustness
of the developed framework. The resulting robust 3D face
tracker can find applications in many fields especially in
the fields of human-computer interaction.

1. INTRODUCTION

Object tracking is required by many vision applications, es-
pecially in video technology and visual interface systems.
Work on visual tracking can be divided into two groups: de-
terministic and stochastic tracking. Probabilistic video anal-
ysis has recently gained significant attention in the computer
vision community through the use of stochastic sampling
techniques. Visual tracking based on probabilistic analy-
sis is formulated from a Bayesian perspective as a problem
of estimating some degree of belief in the state of an ob-
ject at the current time given a sequence of observations.
The idea of a particle filter [1] (also known as Sequential
Monte Carlo (SMC) algorithm) was independently used and
proposed by several research groups. These algorithms pro-
vide flexible tracking frameworks as they are neither limited
to linear systems nor require the noise to be Gaussian and
proved to be more robust to distracting clutter as the ran-
domly sampled particles allow to maintain several compet-
ing hypotheses of the hidden state. These algorithms have

gained prevalence in the tracking literature due in part to the
CONDENSATION algorithm [2].

Within deterministic approaches, appearance-based tech-
niques have been widely used in object tracking. These
techniques have the advantage that they are easy to im-
plement and are generally more robust than feature-based
methods. Of particular interest are Active Appearance Mod-
els (AAMs) [3] which contain two key elements: (i) a sta-
tistical appearance model of shape and texture, and (ii) an
optimization algorithm. AAMs were used for face analy-
sis/synthesis as well as for 3D face tracking [4].

In this work, we aim at designing a robust Active Ap-
pearance Model search for face and facial feature tracking
by integrating a stochastic diffusion step in the search algo-
rithm. The developed framework combines the merits of
both stochastic and deterministic optimization techniques
without the use of any additional visual cues such as op-
tical flow or feature tracking. The rest of the paper is or-
ganized as follows. Section 2 describes the 3D deformable
face model. Section 3 summarizes the concept of Active
Appearance Model search. Section 4 describes the search
algorithm utilizing a stochastic diffusion. Section 5 presents
some experimental results.

2. AN ACTIVE FACE MODEL

In our study, we use the 3D face modelCandide. The 3D
shape of this deformable 3D wireframe model is directly
recorded in coordinate form. The 3D face model is given by
the 3D coordinates of the verticesPi, i = 1, . . . , n where
n is the number of vertices. Thus, the shape up to a global
scale can be fully described by the3n-vectorg – the con-
catenation of the 3D coordinates of all verticesPi. The vec-
tor g can be written as:

g = g + Sσ + A α (1)

whereg is the standard shape of the model, and the columns
of S and A are the Shape and Animation Units, respec-
tively. Thus, the termSσ accounts for shape variability



(inter-person variability) while the termA α accounts for
the facial animation (intra-person variability). In this study,
we use 12 modes for the Shape Units matrix and six modes
for the Animation Units matrix. As Animation Units, the
following Action Units have been chosen: 1) Jaw drop, 2)
Lip stretcher, 3) Lip corner depressor, 4) Upper lip raiser,
5) Eyebrow lowerer, 6) Outer eyebrow raiser. These Action
Units are enough to cover most common facial expressions
(mouth and eyebrow movements). More details about the
used face model can be found in [5].

A face texture is represented as a geometrically normal-
ized image. This geometry is represented by a triangular
2D mesh. The texture of this geometrically normalized im-
age is obtained by texture mapping from the triangular 2D
mesh in the input image using a piece-wise affine transform.
Thus, the texturex of any geometrically normalized image
is given by (using Principal Components Analysis):

x = x + X ξ + γ (2)

wherex is the mean texture, the columns ofX are the texture
modes (the firstM eigenvectors),ξ is the vector of texture
parameters, andγ accounts for the reconstruction error.

Given an image of a face (or a video sequence), the track-
ing consists of estimating the 3D pose of the face,σ andα
for each image. In a tracking context, the model parameters
associated with the current frame will be handed over to the
next frame. For a given person,σ is constant. The geom-
etry of the model is parameterized by the parameter vector
b (the six degrees of freedom associated with the 3D head
pose and the facial animation parameters):

b = [θx, θy, θz, λ tx, λ ty, λ tz, αT ]T

3. THE ACTIVE APPEARANCE MODEL SEARCH

The goal is to find the optimal adaptation of the model to
each input image. In [4], the parameter vectorb is recov-
ered by minimizing the reconstruction error which is given
by the norm of the residual error between the geometrically
normalized image and its best fit with the texture modes.

min
b

e(b) = ‖r(b)‖2 = ‖x− x̂‖2

This is carried out using a gradient descent method in which
the gradient matrix is precomputed. Figure 1 illustrates the
concept of the active appearance model search. It should be
noticed that there are two differences between the work de-
scribed in [4] and Cootes work [3]. In [4], (i) the estimated
parameters deal with the 3D geometry of the face (shape
and motion), (ii) the texture and geometry are separated.

When adapting a 3D face model to a video sequence, the
above iterative algorithm is used for each input frame. For
each frame, the initial estimate ofb is given by its refined
estimate in the previous frame.
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Fig. 1. The active appearance model search aims at finding
the geometric parameters by minimizing the residual error
between the geometrically normalized image and its best
approximation in the face space. This residual error is usu-
ally called the Difference From Feature Space (DFFS).

4. ROBUST TRACKING WITH A STOCHASTIC
DIFFUSION STEP
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Fig. 2. The developed framework consists of three consec-
utive steps.

Since the active appearance model search adopts a di-
rected continuous search and since the minimized recon-
struction error is a highly multi-modal function, the gradient
descent search can easily be stuck in non-desired local min-
ima. Thus, fast head motions as well as sudden changes in
the face illumination make the gradient descent algorithm
inefficient in the sense that the solution obtained at conver-



gence can be completely different from the actual one. As a
result, the adaptation becomes erroneous and the tracker of-
ten looses the face. When track is lost, the only chance for
recovery is that the face visits a location (3D pose) which
belongs to the convergence zone associated with the last
correct optimal geometrical parameters.

To overcome the convergence problems encountered by
the gradient descent algorithm, we add a stochastic search
process which provides a mechanism for escaping non-
desired sub-optimal solutions. The whole search algorithm
is illustrated in Figure 2. It shows how the geometric param-
eters are computed for the current frame in the sequence.
We proceed as follows.

Let b? be the solution obtained at the convergence of the
gradient descent algorithm. Note thatb? does not necessar-
ily correspond to the desired solution, i.e. it may correspond
to a local optimum. We drawJ random samples according
to the following model:

b0 = b? (3)

bj = b? + n j = 1, . . . , J − 1 (4)

In this model,n is a random vector having a centred normal
distribution, i.e.,n ∼ N (0, C). The covariance matrixC is
learned off-line from the state vector differencesbt − bt−1

associated with previously tracked video sequences. This
random drawing can be interpreted as the stochastic diffu-
sion step in a condensation algorithm [2] where the deter-
ministic component is given byb?. In our implementation,
J is set to 100.

For each samplebj , we can easily compute the corre-
sponding texture parametersξ(bj) and the reconstruction
error e(bj) = ‖γ‖2. Thus, for each samplebj the ob-
servation likelihood proposed in [6] for face detection is
evaluated. This likelihood measure takes into account two
distances (i) the DFFS (distance-from-feature-space), and
(ii) the DIFS (distance-in-feature-space). Maximizing this
likelihood is equivalent to minimizing theMahalanobisdis-
tance over the original textures.

The maximum likelihood solution is:

b+ = arg max
bj

(p(bj)) (5)

Since the condensation algorithm weights the particles with
a likelihood measure, and the weighted particles approxi-
mate the posterior distribution of the unobserved state, the
solution given by Eq. (5) can also be viewed as a Monte
Carlo approximation of the maximum a posteriori solution.

The final step of the method is to refine the solution found
at the second step. To this end, the gradient descent algo-
rithm is again invoked withb+ being the starting solution.

(a) (b) (c)

Fig. 3. (a) The previous frame (frame 17).(b) Gradient
descent method: the model is (erroneously) adapted to the
current frame (frame 18) due to the fast head motion.(c)
The developed framework: the model is correctly adapted
to the current frame.
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Fig. 4. The reconstruction error associated with the first
test sequence (Figure 3). The solid curve corresponds to the
AAM search, the dashed curve corresponds to the search
algorithm which includes the stochastic diffusion step.
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Fig. 5. The likelihood measure associated with the first test
sequence (Figure 3). The solid curve corresponds to the
AAM search, the dashed curve corresponds to the search
algorithm including the stochastic diffusion step.



(a) (b) (c)

Fig. 6. (a) The previous frame (frame 274).(b) Gradient
descent method: the model is badly adapted to the current
frame (frame 275). Although there is no fast head motion,
the optimization process was stuck in a non desired local
minimal. (c) The developed framework: the model is cor-
rectly adapted to the current frame.

5. TRACKING RESULTS

Figure 3 ((b) and (c) ) displays the adaptation results as-
sociated with one frame (frame 18) of a 167-frame-long se-
quence, with a fast head motion from the previous frame
(Figure 3(a)). Figure 3(b) displays the adaptation results
obtained with the gradient descent method. One can notice
that the model is still stuck to its adaptation to the previous
frame. Figure 3(c) displays the adaptation results when the
developed framework has been used.

Figure 4 displays the reconstruction error associated with
the sequence. The solid curve corresponds to the AAM
search (the gradient descent method described in Section
3), the dashed curve corresponds to the search algorithm
including the stochastic diffusion step (Section 4). Note
the large difference in the reconstruction errors obtained
at frame 18 for which the adaptations are depicted in Fig-
ures 3(b) and 3(c) for the gradient-based algorithm and for
the proposed framework, respectively. Figure 5 displays the
likelihood measure associated with the two algorithms. As
can be seen, by including a stochastic diffusion step, the
likelihood measure is further maximized yielding both a
better estimation and a robust tracker.

Figure 6 ((b) and(c)) displays the adaptation results at
frame 275 of another test sequence (a 340-frame-long se-
quence). Here, the head has moved only slightly from the
previous frame (Figure 6(a)), the simple gradient descent
method fails to provide an accurate adaptation due to its
lack of robustness when the face is in a non-frontal view
(Figure 6(b)). The stochastic diffusion, however, success-
fully corrects the solution provided by the gradient descent
method (Figure 6(c)). For this sequence, the proposed algo-
rithm yields also a higher likelihood during the whole length
of the sequence (Figure 7).

6. CONCLUSION

We have proposed a stochastic 3D head and facial feature
tracking method using an appearance-based fit measure.
The approach proves to robustly track the 3D head pose
despite rapid moves and significant out-of-plane rotations.
Future work includes improving the robustness of the track-
ing to occlusions and the use of appearance-adaptive models
that does not require to learn textures from a training set.
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Fig. 7. The likelihood measure associated with the second
test sequence (Figure 6). The solid curve corresponds to the
AAM search, the dashed curve corresponds to the search
algorithm including the stochastic diffusion step.
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