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ABSTRACT

This paper addresses issues that arise in content-based in-
formation retrieval systems, which employ statistical fea-
ture extraction and similarity measurements of texture im-
ages. First, we observe that statistical distributions with
heavy algebraic tails, such as the alpha-stable family, are
in many cases more accurate modeling tools for the wavelet
coefficients of images than families with exponential tails,
such as the generalized Gaussian. Motivated by our model-
ing results, we extend a new wavelet-based texture retrieval
method introduced recently by Do and Vetterli by comput-
ing the Kullback-Leibler distance between alpha-stable dis-
tributions. We analyze the performance of the proposed re-
trieval method through experimental results on a database
of texture images and we compare it to the performance of
the traditional approaches.

1. INTRODUCTION

Increasing agglomerations of visual information are
stored in large databases, making digital image libraries
more widely used. To improve the management of these
databases, we need effective and precise methods to search
and interact with them. For this purpose, content-based
image retrieval (CBIR) from unannotated image databases
has been gaining the interest of the research community.

A typical CBIR system is displayed in Figure 1. We
can distinguish two major tasks, namely feature extraction
(FE) and similarity measurement (SM). In the FE step, a
set of features, constituting the so-called image signature,
is generated to accurately represent the content of a given
image. This set has to be much smaller in size than the
original image while capturing as much as possible of the
image information. Typical low-level image features are the
shape, texture and color. During the SM step, a distance
function is employed, which measures how close to a query
image each image in the database is.

Recently, Do and Vetterli have introduced a statisti-
cal framework for texture retrieval in CBIR applications by
jointly considering the two problems of FE and SM [1]. In
their approach, the FE step becomes an ML estimator for
the model parameters of the image data and the SM step
computes the Kullback-Leibler distance between the model
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Fig. 1. A typical CBIR system.

parameters. They applied this statistical framework in a
wavelet-based texture retrieval application, where wavelet
coefficients in each subband were independently modeled
by a generalized Gaussian density (GGD).

In recent work, we have shown that successful image
processing algorithms can achieve both noise reduction and
feature preservation if they take into consideration the ac-
tual heavy-tailed behavior of the signal and noise densi-
ties [2, 3]. Specifically, we have shown that the subband
decompositions of various types of images, including ul-
trasound and SAR, have non-Gaussian statistics that are
best described by families of distributions with algebraic
tails, such as the alpha-stable. We consequently designed
Bayesian processors that exploited these statistics and had
significantly improved performance in real data.

In this work, we address the CBIR problem in a statisti-
cal framework. The approach taken is similar to the method
reported in [1] in that (i) texture retrieval is performed in
the wavelet transform domain where wavelet coefficients in
each subband are independently modeled, and (ii) texture
similarity is measured by means of the Kullback-Leibler dis-
tances (KLD) between model parameters. The added value
of our present work is twofold: first, we show that an of-
ten better approximation for the marginal density of coeffi-
cients at a particular subband produced by various types of
wavelet transforms may be obtained by alpha-stable mod-
els; second, we calculate the KL.Ds between two Sa.S densi-
ties, which by itself is a novel theoretical result. Finally, we
analyze the performance of the proposed retrieval method



Amplitude Probability Density curves
T T T T T

P(IX[>x)
e
S
T
’
L

107 N

10" L L L L L L L L L
0 01 02 03 0.4 05 06 07 08 0.9 1

bala Ampll(ude‘x.

Fig. 2. Modeling of the vertical subband at the first level of
decomposition of the Flowers.0006 image with the Sa.S and
the GGD depicted in solid and dashed lines, respectively.
The estimated parameters for the SaS distribution have the
values o = 0.98, v = 0.0044 while the GGD has parameters
a = 0.0814 and § = 1.522. The dotted line denotes the
empirical APD.

through experimental results on a database of texture im-
ages and we compare it to the performance of the GGD-
KLD method by Do and Vetterli.

2. STATISTICAL CHARACTERIZATION OF
WAVELET SUBBAND COEFFICIENTS

In the FE step, the image is decomposed into several scales
through a multiresolution analysis employing the 2-D wave-
let transform [4]. The energies of the resulting wavelet coef-
ficients identify the image texture. Our proposed method is
based on the accurate modeling of the tails of the marginal
distribution of the wavelet coefficients at each subband: the
wavelet subband coefficients in various scales are modeled
as symmetric alpha-stable (SaS) random variables.

The SaS distribution, which does not have a closed-
form expression except for the Cauchy and Gaussian cases,
is best defined by its characteristic function. As there are
multiple parameterizations of the general one-dimensional
stable densities, the characteristic function can take differ-
ent forms depending on the choice of the parameterization.
Typical forms of the SaS characteristic function are [5]:

¢1(w) = exp(gw —ylw|?), (1)
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where « is the characteristic exponent, taking values 0 <
a<2,0 (—00 < § < o0) is the location parameter, and -,
Y2 (7, v2 > 0) are the dispersions of the distributions, with
v2 = a/®~. The SaS model is suitable for describing sig-
nals with heavier distribution tails than what is assumed by
exponential families, like the GGD. Indeed, the Sa.S den-
sity follows an algebraic rate of decay that depends on the
value of the characteristic exponent: P(X > ) ~ cax™
During the FE step, we estimate the SaS model parame-
ters (a,7y) using the consistent maximum likelihood (ML)
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Fig. 3. Histogram of the estimated values for the character-
istic exponent, «, from 448 texture images of size 128 x 128.

method described by Nolan [6], which gives reliable esti-
mates and provides the most tight confidence intervals.

In our data modeling study, we used 28 randomly cho-
sen textures (real-world 512 x 512 natural scene images)
obtained from the MIT Vision Texture (VisTex) database.
We divided each image into 16 128 x 128 subimages and
we employed three levels of decomposition. The statistical
fitting proceeds in two steps: First, we assess whether the
data deviate from the normal distribution and we determine
if they have heavy tails by employing normal probability
plots. Then, we check if the data is in the stable domain of
attraction by estimating the characteristic exponent, «, di-
rectly from the data and by providing the related confidence
intervals. As further stability diagnostics, we employ the
amplitude probability density (APD) curves (P(|X| > z)
that give a good indication of whether the SaS fit matches
the data near the mode and on the tails of the distribution.

As an example, the heavy-tailed behavior of the wavelet
coefficients for a given subband of the Flowers.0006 image
is depicted in Figure 2 where we compare the Sa.S and
GGD fits for the selected subband. Clearly, the Sa.S den-
sity follows more closely the tail of the empirical APD than
the exponentially decaying GGD. The modeling of the 28
database images (decomposed in 3 levels) produced values
of the a parameter in the range between 0.7 and 2, as it
is shown in the histogram of the estimated values (cf. Fig-
ure 3). We observe that for this set of images, a large
fraction of the wavelet coefficients, approximately one out
of two, follows statistics close to Gaussian (1.8 < o < 2).
These coefficients generally belong to the third decomposi-
tion level. On the other hand, a considerable portion of the
coefficients (belonging to the first two decomposition levels)
exhibits a clear heavy-tailed behavior (o < 1.8).

3. SIMILARITY MEASUREMENT BETWEEN
SaS DISTRIBUTIONS

Recent work by Do and Vetterli used generalized Gaussian
distributions to model the wavelet subband coefficients. As
a result, the similarity measurement step was carried out
by employing the Kullback-Leibler distance between two
GGDs. The overall distance between two images was de-
fined as the sum of the KLDs between corresponding pairs



of subbands. The KLD between two GGDs has a closed-
form expression [1]:
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where (a1, 81) and (a2, B32) are the scale-shape parameter
pairs of each GGD, respectively.

When considering the alpha-stable family, the KLLD be-
tween two Cauchy distributions (Sa.S with a = 1) is calcu-
lated to be
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is a symmetric Cauchy density function with zero mean.
Unfortunately, there is no closed-form expression for the
KLD between two general Sa.S distributions, which are not
Cauchy or Gaussian. To address this problem, we could
employ numerical techniques for the computation of the
KLD between two, numerically approximated Sa.S densi-
ties. This approach could be adequate when the image is de-
composed in a small number of levels, because the number
of the approximated densities is proportional to the num-
ber of these levels. In any other case, this method would
significantly increase the computational burden.

In order to avoid the increased computational complex-
ity of a numerical scheme, we applied the KLD on the nor-
malized versions of the corresponding characteristic func-
tions (CF). Due to the one-to-one correspondence between
a SaS density and its associated characteristic function,
we expect that the KLLD between normalized CFs will be a
good similarity measure between Sa.S distributions.

The normalization procedure for a characteristic func-
tion, results in its transformation into a valid probability
density function. If ¢(w) is a CF corresponding to a Sa.S
distribution, then the function

P(w) = (7)

is a valid density function when

:/Z 6(w) dov.

For the parameterizations of the Sa.S CF described in the
previous section, and assuming that the densities are cen-
tered at zero, i.e., d = 0, the corresponding normalized CF's
are defined as:

bi(w) = ¢(§°") i=1,2,3 (8)
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Fig. 4. Retrieval performance according to the number

of top matches considered. The performance for both the

¢2 + D2 and ¢3 + D3 combinations is the same.

The promising result of the above mentioned procedure
is that we have obtained closed-form expressions for nor-
malized CF's related with SaS densities. By employing the
KLD between a pair of normalized CFs for each one of the
above three parameterizations, we obtained the following
closed form expressions:

2’}/2F(0‘2+1)
C2 1 o
crary;

ags+1
@) ke @) S o
oy
N aaz/all—\ aii-&-l
m(2) - () ar<(1>>
ay

(12)

D1 (¢1]|62)

D2 (¢1]|62)

Ds(d1162)

where (i, i) are the parameters of the CF, ¢;(w), and ¢;
is its normalizing factor.

4. EXPERIMENTAL RESULTS

The proposed retrieval scheme is first applied on one-dimen-
sional synthetic data, and then on a set of texture images
found in the VisTex database.

4.1. 1-D Synthetic Sequences

First, we test the proposed KLD-Sa.S scheme with 1-D syn-
thetic data in order to validate the distance measures (10)-
(12) of Section 3. The generated data set consists of 120
1-D synthetic Sa.S sequences, with the parameters « and
~ spanning the ranges [0.45, 1.5] and [0.1, 3], respectively.
We split each sequence into 16 subsequences constructing a
new data set of 1920 1-D signals. Then, we estimated the
parameters of these sequences by considering them first as
SaS random variables and second as generalized Gaussian
random variables. In the retrieval stage, a query signal is
any one of 1920 sequences in the database. The relevant



Methods
o1+ Dy
82.0638

GGD + KLD
71.6504

¢2 + Do
75.0944

¢3 + Ds
75.0944

Table 1. Average retrieval rate (%) in the top 15 matches.

Filters Methods - Level 1
GGD + KLD | ¢1+ D1 | ¢p2 + D2
db2 66.99 73.63 67.19
db4 65.43 75.29 66.11
Filters Methods - Level 2
GGD + KLD | ¢1+ D1 | ¢2+ D2
db2 67.28 73.34 68.55
db4 67.67 74.90 68.55
Filters Methods - Level 3
GGD + KLD | ¢1+ D1 | ¢2+ D2
db2 67.77 75 69.14
db4 67.96 77.93 70.80

Table 2. Average retrieval rates (%) for the selected subset
of images in the top 15 matches, using Daubechies’ filters
db2, db4, and for 3 decomposition levels.

sequences for each query are defined as the other 15 subse-
quences from the same original sequence. Table 1 shows the
comparison in performance in terms of average percentages
of retrieving relevant subsequences in the top 15 matches,
for each one of the above described similarity measures.

Figure 4 shows the average percentages of retrieving
relevant subsequences as a function of the number of top
matches. We observe that the combination of the Sa.S pa-
rameters with the derived KLD distances (D;, i = 1,2,3)
converges faster than the GGD-KLD method. Also, the
combinations ¢2 + D2, ¢3 + D3 exhibit the same perfor-
mance in all cases. In addition, the ¢1 + D1 variant gives
the best convergence among the three parameterizations.
Of course, this synthetic data being SaS it comes as no
surprise the better performance of the SaS-KLD method.
The point we make is that when the data do follow alge-
braic tails, the new scheme can decrease the retrieval error
rate.

4.2. Texture Images

In this experiment, we compared the performance of the
proposed similarity measures by applying them on the set
of 28 images obtained from the VisTex database. From
these images we generated a database of subimages accord-
ing to the procedure described in Section 2. The relevant
subimages for each query are defined as the other 15 subim-
ages from the same original image. Then, we employed the
2-D DWT with different decomposition levels and filters.

We first tested the retrieval performance in a subset of
the images with fairly heavy-tailed wavelet decompositions,
which had estimated feature values (Sa.S parameters a and
~) falling further apart than the range of the associated
estimation confidence intervals. One should expect that the
tighter the confidence intervals, the better the estimation
of the features, and the better the retrieving performance.
Indeed, Table 2 shows that the ¢1 + D1 variant of the Sa.S-
KLD method has a 7 to 10 % improved retrieval rate than
the GGD-KLD method.

Filters Methods - Level 1
GGD + KLD | ¢1+ D1 | ¢2+ D2
db2 69.51 50.96 57.09
db4 70.46 53.14 56.90
Filters Methods - Level 2
GGD + KLD | ¢1+ D1 | ¢p2+ D2
db2 70.74 58.52 61.61
db4 71.14 61.03 63.07
Filters Methods - Level 3
GGD + KLD | ¢1 4+ D1 | ¢2+ D2
db2 71.60 60.70 63.22
db4 72.03 63.04 65.02

Table 3. Average retrieval rates (%) for the selected set
of images in the top 15 matches, using Daubechies’ filters
db2, db4, and for 3 decomposition levels.

When we considered all 28 images, the performance of
our proposed similarity measures was lower compared with
the performance of the GGD model. The reason is two-fold.
First, as we observe in Figure 3, one out of two features for
this data set has almost Gaussian statistics (o > 1.8). Even
more important, we observed that large confidence intervals
in the estimation of the characteristic exponent values per-
mit the values of a between two distinct images to fall very
close to each other. Hence, inaccuracies in the feature ex-
traction process impede the similarity measurement task of
texture retrieval.

In conclusion, in this paper we extended a recently in-
troduced wavelet-based texture retrieval method by com-
puting Kullback-Leibler distance measures between alpha-
stable distributions. Preliminary experimental results on
a database of texture images showed that the proposed
scheme can be used successfully when the data follow al-
gebraic tails.
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