
BLIND TURBO DECODING OF SIDE-INFORMED DATA HIDING USING ITERATIVE
CHANNEL ESTIMATION

Félix Balado

University College Dublin
Belfield, Dublin 4, Ireland
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ABSTRACT

Distortion-Compensated Dither Modulation (DC-DM) has been
theoretically shown to be a near-capacity achieving data hiding
method, thanks to its use of side information at the encoder. In
practice, channel coding is needed to approach its achievable rate
limit. However, the most powerful coding methods, such as turbo
coding, require knowledge of the channel model. We investigate
here the possibility of undertaking blind iterative decoding of DC-
DM. To this end, we undertake maximum likelihood estimation
of the channel model, intertwining the Expectation-Maximization
algorithm within the decoding procedure.

1. INTRODUCTION

The use of side information at the encoder has proven crucial to the
data hiding problem. The solution provided by Costa [1] for a sim-
ilar communications setting has been decisive to show that host-
signal-induced self-distortion can be effectively removed through
a clever design of the transmission codebook. In the context of
data hiding this result was first pointed out by Chen and Wornell,
who showed [2] that their DC-DM scheme was, asymptotically,
only 1.53 dB away from Costa’s capacity.

Channel coding is the way to approach channel capacity in
any communications scenario, and, therefore, also in data hiding
using side information at the encoder. A number of prior works
have studied the use of state-of-the-art channel coding for side-
informed data hiding [3, 4, 5], using near-capacity achieving turbo
codes overscalarside informed methods following Costa’s guide-
lines. The schemes used therein involve scalar uniform quantiz-
ers which are resized using a scaling factor before quantization —
i.e., amounting to distortion compensation—, and hence they are
equivalent to DC-DM. It is a fact that the type of channel and the
level of distortion are necessary for undertaking iterative decoding.
Incidentally, all these works have worked under the hypothesis that
this information was known by the decoder. Here we explore how
to perform blind1 iterative decoding of DC-DM, i.e., without the
aforementioned assumptions.
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1This term refers to the ignorance of the channel model by the decoder;
not to be confused with blind vs. non-blind data hiding.

1.1. Framework

We assume that we pseudorandomly chooseN samplesx = (x[1],
. . . ,x[N]) from a host signal; the samples inx are independent iden-
tically distributed (i.i.d.) zero-mean random variables with covari-
ance matrixΓx = σ2

x · I . The corresponding watermarked signaly
undergoes a zero-mean random additive attack channel, so that the
signal received at the decoder isz = y + n. The samples of the
random variablen are assumed to be i.i.d. and independent ofx,
with unknown probability density function (pdf) and varianceσ2

n.

In binary DC-DM [2] one information symbolb[k] ∈ {±1} is
hidden by quantizing a sample of the host signalx[k] to the nearest
centroidQb[k](x[k]) ∈ Λb[k] belonging to the uniform lattice2 Λb[k]
given by

Λb[k] = 2∆ Z+∆
(b[k]+1)

2
+d[k],

with d[k] a key-dependent value that can we taken as zero for the
analysis. The watermarked signal is obtained as

y[k] = x[k]+ν ·e[k] = Qb[k](x[k])− (1−ν) ·e[k], (1)

i.e, the watermark is the quantization errore[k] , Qb[k](x[k])−x[k]
weighted by an optimizable constantν, 0≤ ν ≤ 1. The relation
∆ � σx usually holds true due to perceptual reasons. Then, for a
wide range of hosts,e[k] can be assumed to be independent ofx[k]
and uniformly distributed,e[k] ∼U(−∆,∆). Then, the watermark
w[k] = y[k]− x[k] is also uniform, and the embedding power is
E{w2[k]} = ν2∆2/3. The decoder acts by quantizing sample by
sample the received signalz to the closest codebook lattice. Hence
we have that

b̂[k] = arg min
b∈{±1}

∣∣Qb(z[k])−z[k]
∣∣. (2)

Following what we stated in the introduction, we will hide a binary
codewordc = (c[1], . . . ,c[N]) instead of hidingN uncoded bits us-
ing the previous scheme. The codeword is obtained by encoding
a binary information vectorb = (b[1], . . . ,b[M]), M < N, using a
rateR = M/N code. For embedding and decoding we will con-
sider that the codeword symbols are given in antipodal form, i.e.,
c[k] ∈ {±1}. We will center our attention in parallel concatenated
codes with iterative decoding, i.e., turbo codes. We recall that the
parallel concatenated turbo codewords have the form

c = (cs |cp1 |cp2), (3)

2Extending the usual definition of lattice, which in principle must in-
clude the origin.
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L(b) for BCJR are not explicitly shown for simplicity.

where the subvectorcs = b is the systematic output, and the sub-
vectorscp1 andcp2 are the parity outputs corresponding to the con-
stituent recursive systematic convolutionals (RSC’s).

The choice ofν is important because there is a different op-
timum at each watermark-to-noise ratio (WNR) for the achiev-
able rate of DC-DM [4]. The WNR= 10log10ν2∆2/(3σ2

n) is not
known beforehand by the encoder, as he/she cannot knowσn. Pre-
vious works [3, 4, 5] have worked under this assumption, and so
they have used the optimal scaling of their lattices —i.e., the op-
timal distortion compensation factorν— at each WNR. Here, we
will use a fixedν regardless of the WNR, what is more realistic.
Turbo codes present a distinctive waterfall of the decoded bit error
rate at a WNR value relatively close to the minimum for asymptot-
ically errorless decoding. Then, we can approximately choose the
optimalν as the one that corresponds to the WNR at the achievable
rateR imposed by the turbo code. As the code cannot be perfect,
the optimum will actually correspond to a slightly higher WNR.
Notice however that this choice requires knowledge of the channel
model for computing the achievable rate vs. WNR plots [4], but it
is all it can be done. In addition, this optimization does not hold
for WNR’s more negative than the waterfall area, but this is unim-
portant due to the high probabilities of error associated to turbo
decoding in this range.

2. EXACT ITERATIVE DECODING OF DC-DM

First, we will explain the way to exactly establish the reliability of
the channel decisions when the channel model is known by the de-
coder to be Gaussian with varianceσ2

n. The decoder receives the
noisy signalz and proceeds to perform MAP iterative decoding.
This requires the probabilitiesp(z[k] | c[k] = c), c∈{±1}, for com-
puting the reliability log-likelihood ratios. Considering (1), we
have thaty[k] is uniform, and then that the pdf ofz[k] = y[k]+n[k]
is the convolution of a uniform and a Gaussian pdf’s. We can put
this pdf asf (z[k])∗δ{z[k]−Qc(x[k])}, with

f (z) ,
1

2(1−ν)∆

{
Q

(
z− (1−ν)∆

σn

)
−Q

(
z+(1−ν)∆

σn

)}
,(4)

and Q(z) ,
∫ ∞

z exp(−x2/2)/
√

2π dx. This pdf of z[k] is condi-
tioned to a concrete centroid assumption, but we need the pdf for a
generic symbol decision. For obtaining this expression notice that,
due to using (2) at the decoder, the decision ˆc[k] can be seen as
being based on the modular offsets

z̃c[k] , {z[k] modΛc}−∆ =
{

z[k]+∆
(c+1)

2

}
mod 2∆−∆

(5)

to each one of the two latticesΛc, with c∈ {−1,1}. Using these
offsets, the minimum distance decision can be rewritten as

ĉ[k] = argmin
c

∣∣z̃c[k]
∣∣. (6)

Considering (6), it is clear that the reliability measure for the deci-
sion ĉ[k] = c is just

p(z[k] | c[k] = c) , f̃ (z̃c[k]),

with f̃ (·) the pdf followed by ˜zc[k]. Notice that the operation (5)
implies that this pdf is just the aliasing of the sections of (4) corre-
sponding to the Voronoi regions of the lattice 2∆Z, that is

f̃ (z) =
{

∑w∈2∆Z f (z−w), |z| ≤ ∆
0, |z| > ∆ . (7)

3. BLIND ITERATIVE DECODING OF DC-DM

We assume next that the decoder does not know (7). In the com-
munications field, we can find can some approaches that estimate
blindly the pdf of an unknown additive channel such as the one
by Li et al. [6], who propose to heuristically refine a kernel-based
model at each iterative decoding step using the increasingly ac-
curate intermediate decoded information. We will follow a similar
approach, but using sounder theoretical grounds. Taking profit that
the support set of̃f (z) is limited to |z| < ∆, we can resort to ap-
proximating (7) using a simple but general model based on a finite
numberNq of rectangular kernels. This model depends on the pa-
rameters vectorθ = (θ[1], . . . ,θ[Nq]) and it is given by

h(θ,z) ,
Nq

∑
i=1

θ[i] ·Π
(
z− (i−1) ·∆q +∆

)
. (8)

In the expression above the kernelsΠ(z) are defined as

Π(z) ,

{
1/∆q, 0 < z≤ ∆q
0, otherwise

, (9)

with ∆q , 2∆/Nq, which we assume integer. Of course,h(θ,z) = 0
for |z| > ∆. Notice that a further advantage of (8) is that it makes
no assumptions on the symmetry of the attack pdf. This model is
usually considered to be nonparametric, although we can see it as
a parametric one in whichθ has to be adjusted.

Our objective is therefore to optimally estimateθ from the re-
ceived vectorz. The maximum likelihood approach for this esti-
mation can be stated as

θ̂ = max
θ

P(z,θ). (10)



This estimation problem is inherently involved. Still, we may no-
tice that the elements ofz stem from the mixture of data drawn
from two different distributions. At eachz[k] these two possi-
ble distributions (which are in fact the same one shifted by the
offset ∆) correspond to each of the two possible embedded sym-
bolsc[k] ∈ {±1}. This is the situation for which the Expectation-
Maximization (EM) algorithm [7] was conceived, aiming at find-
ing the solution of (10) iteratively with theoretically proven con-
vergence properties. Unfortunately, we cannot afford the hypothe-
sis of independence between the elements ofz that correspond to
the codeword parities, what obscures the solution to (10). For this
reason we will resort to solving instead

θ̂ = max
θ

P(zs,θ),

with zs the subvector ofz corresponding to the systematic part
cs = b of the codewordc, following the notation in (3). Anyway,
and as we will see next, the turbo code can be used to improve the
EM algorithm beyond what we could get withzs alone. In this way,
we can intertwine the iterative turbo decoding with the iterative
estimation problem. We describe next the two steps of the EM
algorithm and their application to our problem, that is summarized
in Figure1.

1. Expectation Step. This step is equivalent to computing
a probability mass function (pmf) ofcs = b (hidden data)
under the knowledge ofzs andθ, that is

q(b) , P(b | zs,θ). (11)

Actually, each iterative turbo decoding stage optimally up-
dates the previousextrinsicpmf of b using the BCJR algo-
rithm, which takes into accountz (and not onlyzs), the code
used for the current parity, and the channel model given by
θ. Therefore, the probabilitiesq(b[k]), for k = 1, . . . ,M,
given by the BCJR algorithm, are the best way to com-
pute (11). Assuming that the information bitsb[k] are in-
dependent, we can write

q(b) =
M

∏
k=1

q(b[k]). (12)

Recall that we can straightforwardly compute these proba-
bilities from the log-likelihood ratiosL(b[k])= log{q(b[k] =
+1)/q(b[k] = −1)}.

2. Maximization Step. Now, using the pdf (12) and zs we
need to compute the newθ that maximizes the EM func-
tional [7], that can be written as

max
θ

Eq(b){logP(zs,b,θ)}. (13)

It is shown in AppendixA that the solutionθ∗ to this opti-
mization problem is given by the expression (17).

After the maximization step we may go back to the expectation
step, for which a new iteration of turbo decoding is performed
using the increasingly more reliable pdf updated using (17) (see
Figure1). This procedure is continued until convergence.

In order to gain further insight from (17) we can consider to
use, instead of the soft valuesq(b[k]), the decisionŝb[k] = signL(b[k])
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Fig. 2. Gaussian noise. Performance of turbo-coded DC-DM with
blind decoding for pdf models with different resolutions.

in that equation. With this choice the pmf’s become as a matter of
fact deterministic, as ifq(b[k] = +1) = 1 thenq(b[k] = −1) = 0,
and vice versa. Interestingly, in this suboptimal case (17) becomes
the normalized histogram ofzs on the binsBi defined in the Ap-
pendix, using the hard decisionsb̂[k] to make the bin assignments
of the correspondingzs[k]. This decision-based approximation,
that would be the intuitive way to updateθ in the EM iterative pro-
cess (see [6]), achieves convergence in less steps, and generally to
a good approximation of the real optimum.

Last, there is partial information available for the initialization
of θ, using the symbol-by-symbol hard decisions (2) that would
be made if the received codeword were just considered as uncoded
information. These hard decisions can be used to make the initial
computation of (17), just as we have explained in the preceding
simplification of the method. Nevertheless, notice that with this
approach only values ofh(θ,z) corresponding to|z| < ∆/2 can
be initialized. All we can do in this initial iteration is to set the
remaining values to a uniform non-zero value, and normalizing (8)
so that it remains a pdf. These values cannot be initialized to zero,
because these “impossible values” would penalize unacceptably
the performance of the iterative decoding.

4. EXPERIMENTAL RESULTS

We present next some results of the tests carried out using turbo
coding and the suboptimal intuitive updates ofθ. We use the RSC
(1 27/31), a pseudorandom interleaver with sizeM = 1000 and
ν = 0.65. First we show in Figure2 the decoding performance
of the blind decoder proposed in front of Gaussian noise, for a pdf
model (8) consisting ofNq kernel functions. We could tend to think
that, the higher the number of kernel functions, the more accurate
the estimation we could get. In principle this is true, but as the
resolutionNq increases so does the variance ofθ, and therefore
the estimated pdf becomes eventually too noisy and useless for
decoding, as we can see in the figure for valuesNq > 8.

For non-Gaussian distortions the gain due to using a blind de-
coder instead of a Gaussian-matched one should be displayed. For
a fair comparison we assume that the Gaussian-matched decoder
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estimates the noise powerσ2
n using the expression

σ̂2
n =

1
M

M

∑
k=1

[
Qb̂[k](z[k])−z[k]

]2− (1−ν)2∆2/3,

and iteratively refining this estimation over successive decoding
steps. In Figure3 we show the performance obtained with this
approach versus blind decoding when the attack is uniform i.i.d.
noise. We also show the Gaussian-matched decoder with a non-
iterative estimation ofσ2

n, stressing the importance of having a
good estimate of the channel variance in order to correctly decode
the turbo-coded information. We can see that the blind method is
able to yield a gain over the less adaptive Gaussian-matched one.
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A. OPTIMAL UPDATE OF THE PARAMETERS

Assuming independence of the samples inzs andb we can write (13)
as

F(θ) , Eq(b){logP(zs,b,θ)}

=
M

∑
k=1

Eq(b) {logP(zs[k],b[k],θ)} .

Using again the independence of theb[k], we can write

F(θ) =
M

∑
k=1

Eq(b[k]) {logP(zs[k],b[k],θ)}

=
M

∑
k=1

∑
b=±1

q(b[k] = b) logP(zs[k],b[k] = b,θ). (14)

We will find it convenient next to rewrite (14) using some useful
definitions. First, we define the intervalsBi of the support set cor-
responding to thei-th kernel in (8), that is,Bi ,

(
(i−1) ·∆q−∆ , i ·

∆q−∆
]
, with i = 1, . . . ,Nq. Using them we can define in turn the

sets of indices
P i

b , {k | z̃s
b[k] ∈ Bi} ,

with b=±1, i = 1, . . . ,Nq, andz̃s
b[k] the modularization (5) applied

onzs[k]. Now, (14) can be put as

F(θ) =
Nq

∑
i=1

∑
b=±1

∑
k∈P i

b

q(b[k] = b) logθ[i]. (15)

According to (13) we have now to maximize (15) with the restric-

tion ∑
Nq

i=1 θ[i] = 1, that guarantees that (8) is a pdf. To this end, we
build the Lagrangian

L(θ) = F(θ)− γ

(
Nq

∑
i=1

θ[i]−1

)
.

Differentiating with respect toθ[i], and equating to zero to obtain
the extreme, we can write

∂L(θ)
∂θ[i]

= ∑
b=±1

∑
k∈P i

b

q(b[k] = b)
1

θ[i]
− γ = 0,

for i = 1, . . . ,Nq. The solution is a maximum due to the nega-
tiveness of the second derivative. In order to solve the Lagrange
multiplier γ we just plug the solution of the equation above into the
restriction obtaining

γ =
Nq

∑
i=1

∑
b=±1

∑
k∈P i

b

q(b[k] = b). (16)

As q(b) is a pmf, and as we are summing up in (16) the pmf’s for
everyb[k], we have thatγ = M. Therefore, the optimal parameter
vectorθ∗ is given by the expression

θ∗[i] =
∑b=±1 ∑k∈P i

b
q(b[k] = b)

M
, i = 1, . . . ,Nq. (17)
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