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60205 Compìegne Cedex, FRANCE
{dornaika, fdavoine, dang}@hds.utc.fr

ABSTRACT

In this paper, we propose a particle filter framework for 3D
tracking of heads and faces in monocular video sequences.
We propose two different approaches. The first approach
utilizes a statistical facial texture model as an observation
likelihood. The second approach utilizes a deterministic
facial texture which is built on-line. The developed ap-
proaches have been successfully tested on several video
sequences. The resulting 3D head tracker can find appli-
cations in many fields, such as human-computer interaction.

1. INTRODUCTION

Object tracking is required by many vision applications, es-
pecially in video technology and visual interface systems.
Work on visual tracking can be divided into two groups:
deterministic and stochastic tracking. Probabilistic video
analysis has recently gained significant attention in the com-
puter vision community. The idea of a particle filter [1]
(also known as Sequential Monte Carlo (SMC) algorithm)
was independently proposed and used by several vision re-
search groups. These algorithms provide flexible tracking
frameworks as they are neither limited to linear systems nor
require the noise to be Gaussian and proved to be more ro-
bust to distracting clutter as the randomly sampled particles
allow to maintain several competing hypotheses of the hid-
den state. Besides, these frameworks can easily handle un-
certainties. These algorithms have gained prevalence in the
visual object tracking literature due in part to the CONDEN-
SATION algorithm [2].

Previous work using particle filters has focused on track-
ing 2D objects or motions such as 2D contours, 2D blobs,
2D affine transforms [3], and 2D ellipses [4, 5]. However, to
our knowledge, a particle filter that tracks the six degrees of
freedom associated with the motion of complex 3D objects
was not reported.

In this paper, we propose a particle filter framework for
tracking the 3D motion of heads/faces. The outline of the

paper is as follows. In Section 2, we describe the 3D face
model, the shape-free texture concept, and the statistical fa-
cial texture model. In Section 3, we describe a particle-
filter-based 3D tracking algorithm using a statistical facial
texture model. In Section 4, we describe a particle-filter-
based 3D tracking algorithm using a deterministic facial
texture. In Section 5, we present some experimental results.

2. MODELLING FACES

2.1. A 3D face model

In our study, we use the 3D face modelCandide. The 3D
shape of this deformable 3D wireframe model is directly
recorded in coordinate form. The 3D face model is given by
the 3D coordinates of the verticesPi, i = 1, . . . , n where
n is the number of vertices. Thus, the shape up to a global
scale can be fully described by the3n-vectorg – the con-
catenation of the 3D coordinates of all verticesPi. The vec-
tor g can be written as:

g = g + Sσ + A α (1)

whereg is the standard shape of the model, and the columns
of S and A are the Shape and Animation Units, respec-
tively. Thus, the termSσ accounts for shape variability
(inter-person variability) while the termA α accounts for
the facial animation (intra-person variability).

Acquiring the user’s personalized face model requires the
estimation of the vectorσ since the static shape only de-
pends onσ. To this end, either feature-based or featureless
approaches can be used.

We stress the fact that for the task of head tracking, the
parameter vectorα is not computed, instead it is set to a
fixed value, e.g, the zero vector. Thus, in a local coordinate
system the 3D model is described by the static shapegs =
g + Sσ.

The adopted projection model is the weak perspective
projection model. We neglect the perspective effects since
the depth variation of the face can be very small compared to
its absolute depth. Therefore, the mapping between the 3D



face model and the image is given by a 2×4 matrix encap-
sulating both the 3D head pose and the camera parameters.
More details about the used face model can be found in [6].

The state of the model is given by the six degrees of free-
dom associated with the 3D head pose. This is given by the
vectorb (3 rotations and 3 translations):

b = [θx, θy, θz, λ tx, λ ty, λ tz]T (2)

2.2. Geometrically normalized facial images

A face texture is represented as a geometrically normalized
image (shape-free texture). The geometry of this image is
obtained by projecting the standard shapeg (wireframe) us-
ing a standard 3D pose (frontal view) onto an image with a
given resolution. This geometry is represented by a triangu-
lar 2D mesh. The texture of this geometrically normalized
image is obtained by texture mapping from the triangular
2D mesh in the input image using a piece-wise affine trans-
form. Mathematically, the warping process applied to an
input imagey is denoted by:

x = W(y, b) (3)

wherex denotes the shape-free texture andb denotes the 3D
head pose.W is the piece-wise affine transform. Figure 1
illustrates the warping process applied to an input image.
Two resolution levels have been used for the shape-free tex-
tures, 1300 and 5392 pixels.

(a) (b)

Fig. 1. (a) An input image with correct adaptation.(b) The
corresponding geometrically normalized image.

2.3. Statistical facial texture model

Using Principal Component Analysis (PCA), the texture of
any geometrically normalized image is a linear combination
of a set of Texture Units or geometrically normalized eigen-
faces. Thus, a texturex is given by:

x = x + X ξ + γ (4)

wherex is the mean texture, the columns ofX are the tex-
ture modes (the firstM eigenvectors),ξ is the vector of tex-
ture parameters, andγ accounts for the reconstruction error.
Thus, the reconstruction error is given by:

e = ‖γ‖2

3. 3D TRACKING BY A PARTICLE FILTER

Given a video sequence depicting a moving face, the track-
ing consists in estimating the 3D pose of the face, i.e. the
vectorbt at framet.

Particle filtering (or Sequential Monte Carlo algorithm)
is an inference process which can be considered as a gen-
eralization of the Kalman filter. It aims at estimating the
unknown statebt from a set of noisy observations (images),
y1:t = {y1, · · · , yt} arriving in a sequential fashion. Two
important components of this approach are the state transi-
tion and observation models whose most general forms can
be given by:

State transition model bt = Ft(bt−1, Ut) (5)

Observation model yt = Gt(bt, Vt) (6)

whereUt is the system noise,Ft is the kinematics,Vt is the
observation noise, andGt models the observer. The particle
filter approximates the posterior distributionp(bt|y1:t) by

a set of weighted particles{b(j)
t , w

(j)
t }J

j=1. Each element

b(j)
t represents the hypothetical state of the object andw

(j)
t

is the corresponding discrete probability.
Then, the state estimate can be set to the minimum mean

square error (MMSE) estimate or the maximum a posteriori
(MAP).

We use the following simple state transition model:

bt = bt−1 + Ut (7)

In this model,Ut is a random vector having a centred nor-
mal distribution,N (0, C). The covariance matrixC is
learned off-line from the state vector differencesbt − bt−1

associated with previously tracked video sequences.
Since image datay are represented as shape-free textures

x (the warped texture), we can set the observation likelihood
p(yt|bt) to p(xt|bt).

The observation likelihoodp(xt|bt) quantifies the consis-
tence of the texturex(bt) with the statistical texture model
represented by the texture modes. For this purpose, we use
a likelihood measure such the one proposed in [7]:

p(xt|bt) = c exp

(
−1

2

M∑

i=1

ξ2
i

λ2
i

)
exp

(
− e

2ρ?

)
(8)

wheree is the reconstruction error,λis are the eigenvalues
associated with the firstM eigenvectors, andρ? is the arith-
metic average of the remaining eigenvalues.

This likelihood measure takes into account two distances
(i) the DFFS (distance-from-feature-space), and (ii) the
DIFS (distance-in-feature-space). Maximizing this likeli-
hood is equivalent to minimizing theMahalanobisdistance
over the original textures.



The particle filter algorithm proceeds as follows:

Initialize a sample setS0 = {b(j)
0 , 1}J

j=1 according to
some prior distributionp(b0).
For t = 1, 2, · · ·

For j = 1, 2, · · · , J
ResampleS0 to obtain a new sample(b′(j)t−1, 1).

Predict the sampleb(j)
t from b′(j)t−1 by drawing

U(j)
t and computing according to Eq. (7).

Compute the geometrically normalized texture
x(b(j)

t ) according to Eq. (3).

Update the weight usingw(j)
t = p(xt|b(j)

t ) ac-
cording to Eq. (8).

End

Normalize the weightsw(j)
t = w

(j)
t /

∑J
i=1 w

(i)
t ; j =

1, 2, . . . , J
End

During filtering, due to the resampling step, samples with
a high weight may be chosen several times while others with
relatively low weights may not be chosen at all.

4. TRACKING WITH A DETERMINISTIC
TEXTURE MODEL

In the previous Section, the filtering process utilizes a like-
lihood measure based on a statistical model of facial texture
(texture modes) which is built off-line using a training set
of facial images. The disadvantage of such models is that
whenever the environment changes, one should recompute
the facial texture model associated with the new environ-
ment.

On the other hand, on-line appearance models release
such constraints (e.g. [8]). Also, they can be generalized
in the sense that they can handel many classes of objects
(not only faces).

In this section, we show that a particle-filter-based track-
ing is still possible using a deterministic likelihood measure.
The components of the tracking algorithm remain the same
as in Section 3 except that the likelihood measure becomes
a deterministic one. In our work, we use the following like-
lihood measure:

p(xt|bt) =
1 + ρ

2
(9)

whereρ is the normalized cross correlation coefficient be-
tween the patchxt(bt) and the current appearance model
At. At represents the stable component of the previous
warped patches under a sliding temporal window. This
component is similar to the stable component introduced
in [8]. In addition, we adopt three view-based face patches

(Atl: left, Atc: center,Atr: right) since the 3D face orien-
tation may vary significantly around a vertical axis. Texture
patches are updated according to the yaw angle (vertical ro-
tation) which is tracked over time. Notice that the appear-
ance models are updated according to:

At = (1− λ) At−1 + λ x(b∗t−1) (10)

whereb∗t−1 is the MAP solution associated with the frame
t − 1. The update rateλ can be chosen experimentally like
most incremental algorithms. With this updating scheme,
the old information stored in the model decays exponen-
tially over time.

5. TRACKING RESULTS

Fig. 2. Particle-filter-based 3D head tracking with a statisti-
cal facial texture model.

Figure 2 displays the tracking results associated with sev-
eral frames of a long test sequence. It corresponds to the
particle-filter-based tracking algorithm with a statistical tex-
ture model. The number of particles is set to 300. The statis-
tical facial texture is built with 330 training face images [6].

Figure 3 displays the tracking results associated with sev-
eral frames of another test sequence. It corresponds to the
particle-filter-based tracking algorithm with an on-line ap-
pearance (a deterministic likelihood measure). The number
of particles is set to 800.

Figure 4 shows other tracking results based on another
test sequence of 140 frames. The top of this figure dis-
plays the tracking results when the 3D head pose is com-
puted with a conventional feature-based RANSAC (RAN-
dom SAmpling Consensus) technique [9] using two consec-



Fig. 3. Particle-filter-based 3D head tracking with an on-
line appearance model.

utive images together with the 3D model of the face. Note
that the features in the old image are the projection of the
model vertices and the set of 3D-to-2D correspondences is
recovered by searching for the best matches in the current
image. The bottom of the figure displays the results of ap-
plying our particle-filter-based tracking method (see Section
3) to the same sequence. For both methods, the adaptation
is displayed for frames 10 and 139. As can be seen, the
RANSAC-based tracking suffers from some drifting due to
the 3D model inaccuracies which has not occurred with our
particle-filter-based tracking method.

Frame 10 Frame 139

Fig. 4. Top: applying the RANSAC technique to a video se-
quence of 140 frames. Bottom: applying the particle-filter-
based method with an active appearance model.

6. CONCLUSION

We have developed two approaches for 3D head tracking
based on particle filters. The first one utilizes a statistical
texture model and the second one utilizes a deterministic
texture model that is built on-line. Preliminary 3D head
tracking results are successful despite the presence of fa-
cial actions. Currently, we are investigating appearance-
adaptive models as well as tracking both 3D face pose and
facial actions.
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