

AN OPEN PLATFORM FOR DYNAMIC MULTIMEDIA INDEXING

Bassem HAIDAR, Philippe JOLY, Jean-Paul BAHSOUN

IRIT, Institut de Recherche en Informatique de Toulouse

118, route de Narbonne - 31062 Toulouse Cedex 04
{haidar, joly, bahsoun}@irit.fr

ABSTRACT

In this paper, we present a multimedia indexing platform
that allows the dynamic composition of multimedia
indexing tools. The goal is to reduce the amount of
human interaction needed to produce some complex
multimedia description and to provide more flexibility to
the collaboration between multimedia indexing tools.
The platform allows the communication and the data
transfer between tools based on a central server. For all
multimedia tools we define a wrapper, which is a
package of code that can dynamically link to the central
server. This wrapper will be able to reply to the set of
standard messages used by the platform. We propose a
chaining algorithm based on the Input/Output data type.
The dynamic indexing algorithm will aim at
automatically finding a subset of tools and their
interactions to produce an index required by a user.

1. INTRODUCTION

The need for collaborative indexing and more complexes
indexing tools is rapidly increasing in multimedia
indexing domain. Many indexes can not be generated by
a simple tool and need to be produced by a sequence of
more or less sophisticated tools in a given order. These
tools are developed and distributed by different research
teams with in general really specialized skills on a single
media. This makes the exploitation of these tools for
cross-media analysis a really difficult challenge and a
hard lock for potential research activities on multimedia
index mining.
Taking for example the indexing of audio documents; in
order to make the transcription of the speech in an
automatic way, we may first analyze the audio content
type (Speech/Music/Noise), then we can identify the
language of speaker in case of speech content, and then
we can try to transcribe the speech into text with the
corresponding indexer. The integration of these tools into
cooperative applications requires the development of an
intelligent platform in which the interoperability of
different indexing tools is defined.
We propose a dynamic multimedia indexing platform
that allows the dynamic tools composition. These tools
are modeled as processes with some different potential

customized executions according to the client needs. A
composite tool is modeled by a tree. The latter defines the
order of execution among the nodes or different
processes. The goal of our platform is to generate an
index in a completely dynamic way as it is explained in
the following scenario: given an index the chaining
algorithm must find a subset of tools and their
interactions to realize the desired index on any type of
source (audio, video and textual contents). Input data is
not defined by the user�s request. All the documents
available on the platform are potential candidate to be
indexed and will be selected automatically by the
chaining algorithm.
The dynamic tool composition provides two important
benefits. The first one is more flexibility in the chain
composition which can depend on user�s requirement,
and can be changed dynamically due to the integration of
new tools in the platform. The second one is the
reduction of human interaction needed to chain indexers.

2. STATE OF THE ART
Most of the work in collaborative multimedia indexing
has focused on using a static, manually built, chain of
multimedia tools to generate a desired index. Among all
the projects developed during this last decade and
dealing with that kind of problem, let us mention the
KLIMT project [1] which proposes an open framework
that allows the integration of multimedia indexing tools.
The framework implements the communication and the
data transfer mechanisms. The KLIMT platform
proposes some scenarios for chaining multimedia
indexing tools. The chaining process is limited to some
well-defined scenarios, which are written as a script.
The AGIR project [2] aimed at developing technologies
and software tools allowing efficient multimedia
document search systems based on the automated
analysis of media content and on a normalized content
description language. The collaboration between tools
was here still static and manual.
The Acoi project [3] presents a system that combines
independent feature detector programs with a multimedia
database technology, to provide a semantic rich index to
multimedia data items on the Web. A grammatical

framework called 'feature grammars' is used as a
description of the execution sequence of the indexing
program.
The chaining process is used to compose web services.
The order of messages exchanged between services must
be described separately in a flow specification. There are
many Web services flow specification languages like
BPEL4WS [4] and WSCI [5]. The exact control and data
flow that determines when an operation can be executed
is provided by a flow composition language. Thus, the
composition of the flow is still manually obtained [6].

An automated semantic translation of web service is
proposed in [7]. It is based on a recursive back-chaining
algorithm to determine a sequence of services invocation.
In the case of composing web services, the required result
can be produced by several input data. In our case (the
chaining of multimedia tools), the chaining process is
more complicate; in fact, a description corresponds to
only one multimedia document. By consequence,
constraints must be added to guaranty the convergence to
the same input document.

In eFlow [8], a composite service is described as a
process schema that composes other basic or composite
services. A schema is modeled by a graph (the flow
structure), which defines the order of execution among
the nodes in the process. The graph may include service,
decision, and event nodes. Service nodes represent the
invocation of a basic or composite service; decision nodes
specify the alternatives and rules controlling the
execution flow, while event nodes enable service
processes to send and receive several types of events.
An open framework is proposed in the DCS [9]
(Distributed Software Component), it allows the
integration of news component into a distributed
framework. The integration is based on a specification
file containing properties about component and on a
wrapper that allows the component to be linked to the
platform.

3. GLOBAL ARCHITECTURE

The platform is composed of the distributed indexing
tools and a central server that implements the control and
the dynamic chaining services:

3.1. Components
An indexing tool does not provide in general the features
required for easy integration on a distributed platform.
Our idea is to define a wrapper able to reply to the set of
standard messages used for communication between
those kinds of tools. This wrapper is a package of code
that can be dynamically linked to the central server. It is
composed of the following two generic interfaces.

3.1.1. Configurator interface
Each tool will be defined by a specification file written by
the tool developer. This describes some properties such
as ComponentRole, Description, ExecutablePath,
InputType, OutputType, StorageInputPath,
StorageOutputPath. This file will be written in XML.

The configurator interface allows the platform to access
these specifications needed for the formulation of
messages transmitted between the platform and the
distant tool.

3.1.2. Control interface
This interface defines the method used by the plat-form
to communicate with the tool. It provides functionalities
for:

− Launching the distant component,
− Getting component status, and
− Data transferring from and to the component.

3.2. Platform services
3.2.1. Tool discovery service
Tool discovery is the process of locating tools available to
take part in the indexing chain composition.
An architecture supporting dynamic tools composition
must have a repository to store specifications about
composable tools. This repository must allow a tool,
defined by a set of attributes, to be retrieved by a
searching service. A new tool will be integrated in the
platform by sending towards the storage service the
information contained in the specification file. This
information will be available for the other components
through the platform.

Some searching methods based on particular criteria are
implemented in this service. These methods play a
principal role in the dynamic composition of tools by
allowing the selection of the component able to generate
such type of data.

3.2.2. Data transfer and control service
This service communicates with the control interface of
each tool. It allows a robust data transfer and the control
of tools: launching, stopping and getting the tool status at
runtime. The FTP protocol will be used to transfer the
multimedia contents between tools. A CORBA (and later
a SOAP) framework has been implemented to transmit
the control messages between the central server and the
distributed tools.

3.2.3. Dynamic indexing service
The dynamic composition problem stands in defining
and assuming the interoperability between available tools
declared in the tool repository to build a given index. Our
idea is to describe the Input/output data type of each

indexing tool with a semantic description. For instance,
the goal of an audio analyzer [10] we intend to plug on
the platform is to localize segments of speech, music,
noise and silence in an audio file. The integration of this
tool in a dynamic chain is based only on the Input/Output
data type, i.e. a .wav file as input and an
AudioSegmentContent type as output (figure 1). Semantic
types are from the ones defined by the MPEG7 standard
when it is possible. Other semantic types have to be
added to provide pieces of description which are not
available in MPEG7.

The composition process is based on a chaining
algorithm (Section 4). The indexing service uses the
discovery service to find the set of indexers needed in the
composition process and the control service to execute
the created chain.

Figure 1: semantic specification of the Input/Output data type for the
audio analysis tool

4. CHAINING ALGORITHM
We propose a recursive algorithm that allows the
construction of a composite tool. Based on a given
requested index (which is actually a descriptor asked by
the user) the chaining algorithm must find a set of tools
and their interactions to detect or recognize each
occurrence related to this descriptor. The algorithm is
recursive and it stops when a primitive multimedia
content (audio, videos files) can be used as an input of
the last integrated indexer.

We start with a given "Index" and we try to find the
unitary indexer able to generate this descriptor type.
Once such a tool is found, if the input type of this indexer
is a multimedia content, we stop and the given index can
be generated by application to all documents
corresponding to the input data type. In the other case, if
the input type of this indexer is another descriptor type

corresponding to data generated by another tool, we
repeat the same process recursively, integrating each
time a new indexer at the top of the chain, until a
multimedia content type is found. The following program
is a pseudocode representation of the recursive chaining
algorithm
Construct_composite_tool (in index_type, in out composite_tool)
{

Search (in index_type, out indexer_tool_ref, out in_data_type, out
in_data_ref)
composite_tool.add_tool_ref(in indexer_tool_ref)
composite_tool.add_data_source_ref(in data_source_ref)
if data_source_type == multimedia_contents_type
 Return;
Construct_composite_tool(in out data_source_type, in out
composite_tool)
}

Figure 2: Execution tree constructed by the chaining algorithm

The process is simple in the case of linear chains, i.e.
there is only one input and one output for each included
indexer, but it will be much more complicated if the
involved tools require several data inputs. In this case,
the chains will take the aspect of a tree and then we have
to apply the recursive algorithm to each branch of this
tree with the assumption that the tree is devoted to index
only one source (i.e. one document at a time). In other
words, the tree must have one and only one node at the
top.
In the following example, we explain the construction of
the tree (Figure 2) by applying the chaining algorithm to
generate a given index. We use two FIFO queues: I is a
list of input requirements that are not matched by the
chaining processes; O is a list of the output types
generated by indexers and which are still not used in the
tree.

<Component ComponentRole="Index">
<Description>To localize segments of Speech, Music,
Noises and Silences in an audio file</Description>
 <Authors>J.Pinquier</Authors>
 <Version>v123.2b</Version>
 <Input>
 <InputData>
 <FileFormat>wav</FileFormat>

<StorageInputPath>
ftp://aljolson.irit.fr/Pidot/Input
</StorageInputPath>

 </InputData>
 </Input>
 <Output>
 <OutputData>
 <FileFormat>xml</FileFormat>
 <ContentType>AudioSegmentContent

</ContentType>
 <StorageOutputPath>
ftp://aljolson.irit.fr/Pidot/output
</StorageOutputPath>

 </OutputData>
 </Output>
</Component>

H

iC1

oE1

iE2

oH2

iH1

A

CB

E

G

D

F

iA1 iA2

oB1 oC1

iB1

oD1

iD1

oF1
oF2

iE1

oG1

iF1 iG1

oA1

index

oF2

O

iA2 oH2

I

Given an index, the dynamic indexing service asks the
discovery service for a tool able to generate the desired
index, the discovery service finds the tool A which
requires iA1 and iA2 as Input type, we try to apply the
recursive algorithm to the first type iA1 and we store the
second type iA2 in the I queue.
iA1 is generated by B which takes iB1 as input, iB1 will
be generated by D and iD1 by F, but F generates another
type of description oF2 that we store it in queue of the
available output types O, so we can use it as input for
another branch of the tree. We stop with the tool F
because iF1 is a multimedia content type.
As far as the I queue is not empty, we will apply the same
process to iA2 while trying to converge towards one of
the element stored in the O queue, or towards the
multimedia contents i.e. iF1.

5. CONCLUSION AND FUTURE WORKS
In this paper, we have introduced the main concepts of a
dynamic multimedia indexing platform, which supports a
dynamic policy of multimedia indexation; we have
presented a global architecture of the platform, and the
services that provides the communication mechanisms.
We have proposed a recursive algorithm for dynamically
chaining indexing tools, based on the compatibility
between input and output data types of available tools.
We intend to apply this technology for the
implementation of the Pidot project, which is a
transmedia open distributed indexing platform. Among
expected results, we want to identify the best chain
between different concurrent solutions to produce one
given descriptor or, with the integration of generic
aggregation tools, to automatically mine chains which
can produce new descriptors.
More research efforts have to be achieved in the future to
solve problems linked to the dynamic indexing approach.
The first problem is the consistence of the generated
chain. For example, in the case of automatic
transcription of French spoken contents, the algorithm
will allows to build the chain able to generate a textual
description starting from an audio file (wav), even when
some of these audio files contain only spoken English. In
this case, time to time, considering the language used in
the document, the chain will not generate any result. So
we have to define mechanisms able to inform of this
inconsistency regarding to the contents and to stop the
execution of the chain in that case.
The second problem is the choice between different tools
that have the same output data type. For the moment the
only criteria to select an indexing tool is its output data
type. But we can imagine that more than one tool may be
able to produce the same output type. So we should
define some other criteria to make the best choice.

The third problem consists in several possible chains
which can be determined to produce a same given index.
Here again, some criteria have to be designed to make
the best choice.
Finally we have to define the chain updating mechanism
which allows to dynamically change the chain after the
integration or the removal of an indexer.

6. REFERENCES

[1] V. Conan, I. Ferrané, P. Joly, C. Vasserot. KLIMT:
Intermediations Technologies and Multimedia Indexing. In
Third International Workshop on Content-Based Multimedia
Indexing (CBMI'03), Rennes, France, 22 septembre 24
septembre 2003. INRIA, p. 11-18.

[2] AGIR : Architecture Globale pour l'Indexation et la
Recherche par le contenu de données multimédia.
http://www.ina.fr/recherche/projets/finis/agir.fr.html.

[3] M.Windhouwer, A.Schmidt, M.Kersten. Acoi: A System for
Indexing Multimedia Objects. In International Workshop on
Information Integration and Web-based Applications &
Services, Yogyakarta, Indonesia, November 1999.

[4] Business Process Execution Languages for Web Services,
Version 1.0. IBM Report.
http://www.ibm.com/developerworks/library/ws-bpel/.

[5] WSCI: A. Arkin, S. Askary, S. Fordin, W. Jekeli, K.
Kawagushi, D. Orchard, S. Poligliani, K. Riemer, S. Struble, P.
Takacsi-Nagy, I. Trickovic, and S. Zimeck. Web Service
Choreography Interface 1.0.

[6] J. Koehler, B. Srivastava: Web Service Composition:
Current Solutions and Open Problems, ICAPS 2003 Workshop
on Planning for Web Services, pages 28 - 35.

[7] Mandell, D. and McIlraith, S. A Bottom-Up Approach to
Automating Web Service Discovery, Customization, and
Semantic Translation. In the Proceedings of the Twelfth
International World Wide Web Conference Workshop on E-
Services and the Semantic Web (ESSW'03). Budapest, 2003.

[8] Fabio Casati, Ski Ilnicki, Li-jie Jin, Ming-Chien Shan: An
Open, Flexible, and Configurable System for Service
Composition. WECWIS 2000: 125-132

[9] H.J. Batteram and H.P. Idzenga, A Generic Software
Component Framework for Distributed Communication
Architectures, ECSCW 97 Workshop on Object Oriented
Groupware Platforms, 1997, Lancaster UK, pp. 68-73

[10] J. Pinquier, J. L. Rouas, R. André-Obrecht. Robust
speech/music classification in audio documents. In
International Conference on Spoken Language Processing
(ICSLP'2002), Denver, Etats-Unis, 16 septembre 20
septembre2002 . Causal Productions Pty Ltd,
www.causal.on.net, p.2005 -2008, Vol.3.

	Index
	WIAMIS 2004 Home Page
	Conference Info
	Chairman Message
	Program Committee
	Reviewing Committee
	Sponsors
	Welcome to Lisboa
	Workshop Venue
	Social Activities
	On-Site Activities
	Journal Special Issues

	Sessions
	Wednesday 21.4.2004
	WedAmPS1-Invited: Advances on Facial Recognition
	WedAmOR1-Oral 1 - Facial Analysis and Recognition
	WedAmPO1-Poster 1 - Facial Analysis Tools
	WedAmPO2-Poster 2 - Error Resilience and Rate Control
	WedPmOR1-Oral 2 - Watermarking
	WedPmSS1-Panel: Facial Analysis: Tools and Applications
	WedPmPO1-Poster 3 - Data Hiding and Protection
	WedPmPO2-Poster 4 - Analysis for Surveillance

	Thursday 22.4.2004
	ThuAmPS1-Invited: Analysis for Content Protection
	ThuAmOR1-Oral 3 - Segmentation
	ThuAmSS1-Semantic-based Multimedia Analysis and Access ...
	ThuAmPO1-Poster 5 - Indexing and Retrieval
	ThuAmPO2-Poster 6 - Quality Evaluation
	ThuAmSS2-Semantic-based Multimedia Analysis and Access ...
	ThuPmOR1-Oral 4 - Indexing and Retrieval
	ThuPmSS1-Panel: Segmentation and Indexing: Where are we ...
	ThuPmPO1-Poster 7 - Detection and Tracking
	ThuPmPO2-Poster 8 - Extraction, Structuring and Classif ...

	Friday 23.4.2004
	FriAmPS1-Invited: Recent Advances on Video Coding
	FriAmOR1-Oral 5 - Content Adaptation
	FriAmPO1-Poster 9 - Scalability, Transcoding and Transm ...
	FriAmPO2-Poster 10 - Image and Video Coding
	FriPmOR1-Oral 6 - Object Detection and Tracking
	FriPmSS1-Panel: Image and Video Analysis: Trends and Ch ...
	FriPmPO1-Poster 11 - Applications
	FriPmPO2-Poster 12 - Personalization

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Y
	Z

	Papers
	All Papers
	Papers by Sessions
	Papers by Topics

	Topics
	Multimedia content analysis and understanding
	Content generation and manipulation
	Content-based browsing, indexing and retrieval of image ...
	2D/3D feature extraction
	Advanced descriptors and similarity metrics for audio a ...
	Relevance feedback and learning systems
	Supervised and unsupervised segmentation of objects in ...
	Identification and tracking of regions in scenes
	Voice/audio assisted video segmentation
	Analysis for coding efficiency and increased error resi ...
	Analysis and understanding tools for content adaptation
	Multimedia content adaptation tools, transcoding and tr ...
	Content summarization and personalization strategies
	Data hiding and copyright protection of multimedia cont ...
	Semantic mapping and ontologies
	Multimedia analysis for advanced applications
	Multimedia analysis for surveillance, broadcasting, mob ...
	Multimedia analysis hardware and middleware

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Current paper
	Presentation session
	Abstract
	Authors
	Bassem Haidar
	Philippe Joly
	Jean-Paul Bahsoun

